973 resultados para Fusion Proteins
Resumo:
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation involving RARα and one of four fusion partners: PML, PLZF, NPM, and NuMA genes. To study the leukemogenic potential of the fusion genes in vivo, we generated transgenic mice with PLZF–RARα and NPM–RARα. PLZF–RARα transgenic animals developed chronic myeloid leukemia-like phenotypes at an early stage of life (within 3 months in five of six mice), whereas three NPM–RARα transgenic mice showed a spectrum of phenotypes from typical APL to chronic myeloid leukemia relatively late in life (from 12 to 15 months). In contrast to bone marrow cells from PLZF–RARα transgenic mice, those from NPM–RARα transgenic mice could be induced to differentiate by all-trans-retinoic acid (ATRA). We also studied RARE binding properties and interactions between nuclear corepressor SMRT and various fusion proteins in response to ATRA. Dissociation of SMRT from different receptors was observed at ATRA concentrations of 0.01 μM, 0.1 μM, and 1.0 μM for RARα–RXRα, NPM–RARα, and PML–RARα, respectively, but not observed for PLZF–RARα even in the presence of 10 μM ATRA. We also determined the expression of the tissue factor gene in transgenic mice, which was detected only in bone marrow cells of mice expressing the fusion genes. These data clearly establish the leukemogenic role of PLZF–RARα and NPM–RARα and the importance of fusion receptor/corepressor interactions in the pathogenesis as well as in determining different clinical phenotypes of APL.
Resumo:
The ectodomain of the Ebola virus Gp2 glycoprotein was solubilized with a trimeric, isoleucine zipper derived from GCN4 (pIIGCN4) in place of the hydrophobic fusion peptide at the N terminus. This chimeric molecule forms a trimeric, highly α-helical, and very thermostable molecule, as determined by chemical crosslinking and circular dichroism. Electron microscopy indicates that Gp2 folds into a rod-like structure like influenza HA2 and HIV-1 gp41, providing further evidence that viral fusion proteins from diverse families such as Orthomyxoviridae (Influenza), Retroviridae (HIV-1), and Filoviridae (Ebola) share common structural features, and suggesting a common membrane fusion mechanism.
Resumo:
Intracellular protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus and within the Golgi apparatus is facilitated by COP (coat protein)-coated vesicles. Their existence in plant cells has not yet been demonstrated, although the GTP-binding proteins required for coat formation have been identified. We have generated antisera against glutathione-S-transferase-fusion proteins prepared with cDNAs encoding the Arabidopsis Sec21p and Sec23p homologs (AtSec21p and AtSec23p, respectively). The former is a constituent of the COPI vesicle coatomer, and the latter is part of the Sec23/24p dimeric complex of the COPII vesicle coat. Cauliflower (Brassica oleracea) inflorescence homogenates were probed with these antibodies and demonstrated the presence of AtSec21p and AtSec23p antigens in both the cytosol and membrane fractions of the cell. The membrane-associated forms of both antigens can be solubilized by treatments typical for extrinsic proteins. The amounts of the cytosolic antigens relative to the membrane-bound forms increase after cold treatment, and the two antigens belong to different protein complexes with molecular sizes comparable to the corresponding nonplant coat proteins. Sucrose-density-gradient centrifugation of microsomal cell membranes from cauliflower suggests that, although AtSec23p seems to be preferentially associated with ER membranes, AtSec21p appears to be bound to both the ER and the Golgi membranes. This could be in agreement with the notion that COPII vesicles are formed at the ER, whereas COPI vesicles can be made by both Golgi and ER membranes. Both AtSec21p and AtSec23p antigens were detected on membranes equilibrating at sucrose densities equivalent to those typical for in vitro-induced COP vesicles from animal and yeast systems. Therefore, a further purification of the putative plant COP vesicles was undertaken.
Resumo:
The energetics of a fusion pathway is considered, starting from the contact site where two apposed membranes each locally protrude (as “nipples”) toward each other. The equilibrium distance between the tips of the two nipples is determined by a balance of physical forces: repulsion caused by hydration and attraction generated by fusion proteins. The energy to create the initial stalk, caused by bending of cis monolayer leaflets, is much less when the stalk forms between nipples rather than parallel flat membranes. The stalk cannot, however, expand by bending deformations alone, because this would necessitate the creation of a hydrophobic void of prohibitively high energy. But small movements of the lipids out of the plane of their monolayers allow transformation of the stalk into a modified stalk. This intermediate, not previously considered, is a low-energy structure that can reconfigure into a fusion pore via an additional intermediate, the prepore. The lipids of this latter structure are oriented as in a fusion pore, but the bilayer is locally compressed. All membrane rearrangements occur in a discrete local region without creation of an extended hemifusion diaphragm. Importantly, all steps of the proposed pathway are energetically feasible.
Resumo:
Structural studies of viral membrane fusion proteins suggest that a “trimer-of-hairpins” motif plays a critical role in the membrane fusion process of many enveloped viruses. In this motif, a coiled coil (formed by homotrimeric association of the N-terminal regions of the protein) is surrounded by three C-terminal regions that pack against the coiled coil in an oblique antiparallel manner. The resulting trimer-of-hairpins structure serves to bring the viral and cellular membranes together for fusion. learncoil-vmf, a computational program developed to recognize coiled coil-like regions that form the trimer-of-hairpins motif, predicts these regions in the membrane fusion protein of the Visna virus. Peptides corresponding to the computationally identified sequences were synthesized, and the soluble core of the Visna membrane fusion protein was reconstituted in solution. Its crystal structure at 1.5-Å resolution demonstrates that a trimer-of-hairpins structure is formed. Remarkably, despite less than 23% sequence identity, the ectodomains in Visna and HIV-1 envelope glycoproteins show detailed structural conservation, especially within the area of a hydrophobic pocket in the central coiled coil currently being targeted for the development of new anti-HIV drugs.
Resumo:
We describe a two-hybrid strategy for detection of interactions with transactivator proteins. This repressed transactivator (RTA) system employs the N-terminal repression domain of the yeast general repressor TUP1. TUP1-GAL80 fusion proteins, when coexpressed with GAL4, are shown to inhibit transcription of GAL4-dependent reporter genes. This effect requires the C-terminal 30 residues of GAL4, which are required for interaction with GAL80 in vitro. Furthermore, repression of GAL transcription by TUP1-GAL80 requires SRB10, demonstrating that the TUP1 repression domain, in the context of a two-hybrid interaction, functions by the same mechanism as endogenous TUP1. Using this strategy, we demonstrate interactions between the mammalian basic helix–loop–helix proteins MyoD and E12, and between c-Myc and Bin-1. We have also identified interacting clones from a TUP1-cDNA fusion expression library by using GAL4-VP16 as a bait fusion. These results demonstrate that RTA is generally applicable for identifying and characterizing interactions with transactivator proteins in vivo.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
A central event in the invasion of a host cell by an enveloped virus is the fusion of viral and cell membranes. For many viruses, membrane fusion is driven by specific viral surface proteins that undergo large-scale conformational rearrangements, triggered by exposure to low pH in the endosome upon internalization. Here, we present evidence suggesting that in both class I (helical hairpin proteins) and class 11 (beta-structure-rich proteins) pH-dependent fusion proteins the protonation of specific histidine residues triggers fusion via an analogous molecular mechanism. These histidines are located in the vicinity of positively charged residues in the prefusion conformation, and they subsequently form salt bridges with negatively charged residues in the postfusion conformation. The molecular surfaces involved in the corresponding structural rearrangements leading to fusion are highly conserved and thus might provide a suitable common target for the design of antivirals, which could be active against a diverse range of pathogenic viruses.
Resumo:
Failure to express soluble proteins in bacteria is mainly attributed to the properties of the target protein itself, as well as the choice of the vector, the purification tag and the linker between the tag and protein, and codon usage. The expression of proteins with fusion tags to facilitate subsequent purification steps is a widely used procedure in the production of recombinant proteins. However, the additional residues can affect the properties of the protein; therefore, it is often desirable to remove the tag after purification. This is usually done by engineering a cleavage site between the tag and the encoded protein that is recognised by a site-specific protease, such as the one from tobacco etch virus (TEV). In this study, we investigated the effect of four different tags on the bacterial expression and solubility of nine mouse proteins. Two of the four engineered constructs contained hexahistidine tags with either a long or short linker. The other two constructs contained a TEV cleavage site engineered into the linker region. Our data show that inclusion of the TEV recognition site directly downstream of the recombination site of the Invitrogen Gateway vector resulted, in a loss of solubility of the nine mouse proteins. Our work suggests that one needs to be very careful when making modifications to expression vectors and combining different affinity and fusion tags and cleavage sites: (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
This is a comprehensive study of protein-mediated membrane fusion through single-molecule fluorescence resonance energy transfer (smFRET). Membrane fusion is one of the important cellular processes by which two initially distinct lipid bilayers merge their hydrophobic cores, resulting in one interconnected structure. For example, exocytosis, fertilization of an egg by a sperm and communication between neurons are a few among many processes that rely on some form of fusion. Proteins called soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) play a central role in fusion processes which is also regulated by many accessory proteins, such as synaptotagmin, complexin and Munc18. By a new lipid mixing method at the single-vesicle level, we are able to accurately detect different stages of SNARE-mediated membrane fusion including docking, hemi and full fusion via FRET value of single donor/acceptor vesicle pair. Through this single-vesicle lipid mixing assay, we discovered the vesicle aggregation induced by C2AB/Ca2+, the dual function of complexin, and the fusion promotion role of Munc18/SNARE-core binding mode. While this new method provides the information regarding the extent of the ensemble lipid mixing, the fusion pore opening between two vesicular cavities and the interaction between proteins cannot be detected. In order to overcome these limitations, we then developed a single-vesicle content mixing method to reveal the key factor of pore expansion by detecting the FRET change of dual-labeled DNA probes encapsulated in vesicles. Through our single-vesicle content mixing assay, we found the fusion pore expansion role of yeast SNAREs as well as neuronal SNAREs plus synaptotagmin 1.
Resumo:
Cellular response to radiation damage is made by a complex network of pathways and feedback loops whose spatiotemporal organisation is still unclear despite its decisive role in determining the fate of the damaged cell. Revealing the dynamic sequence of the repair proteins is therefore critical in understanding how the DNA repair mechanisms work. There are also still open questions regarding the possible movement of damaged chromatin domains and its role as trigger for lesion recognition and signalling in the DNA repair context. The single-cell approach and the high spatial resolution offered by microbeams provide the perfect tool to study and quantify the dynamic processes associated with the induction and repair of DNA damage. We have followed the development of radiation-induced foci for three DNA damage markers (i.e. γ-H2AX, 53BP1 and hSSB1) using normal fibroblasts (AG01522), human breast adenocarcinoma cells (MCF7) and human fibrosarcoma cells (HT1080) stably transfected with yellow fluorescent protein fusion proteins following irradiation with the QUB X-ray microbeam (carbon X-rays <2 µm spot). The size and intensity of the foci has been analysed as a function of dose and time post-irradiation to investigate the dynamics of the above-mentioned DNA repair processes and monitor the remodelling of chromatin structure that the cell undergoes to deal with DNA damage.
Resumo:
The development of breast cancer is a complex process that involves multiple genes at many stages, from initial cell cycle dysregulation to disease progression. To identify genetic variations that influence this process, we conducted a large-scale association study using a collection of German cases and controls and >25,000 SNPs located within 16,000 genes. One of the loci identified was located on chromosome 11q13 [odds ratio (OR)=1.85, P=0.017]. The initial association was subsequently tested in two independent breast cancer collections. In both sample sets, the frequency of the susceptibility allele was increased in the cases (OR=1.6, P=0.01). The susceptibility allele was also associated with an increase in cancer family history (P=0.1). Fine mapping showed that the region of association extends approximately 300 kb and spans several genes, including the gene encoding the nuclear mitotic apparatus protein (NuMA). A nonsynonymous SNP (A794G) in NuMA was identified that showed a stronger association with breast cancer risk than the initial marker SNP (OR=2.8, P=0.005 initial sample; OR=2.1, P=0.002 combined). NuMA is a cell cycle-related protein essential for normal mitosis that is degraded in early apoptosis. NuMA-retinoic acid receptor alpha fusion proteins have been described in acute promyelocytic leukemia. Although the potential functional relevance of the A794G variation requires further biological validation, we conclude that variations in the NuMA gene are likely responsible for the observed increased breast cancer risk.
Resumo:
Two transgenic callus lines of rice, stably expressing a β-glucuronidase (GUS) gene, were supertransformed with a set of constructs designed to silence the resident GUS gene. An inverted-repeat (i/r) GUS construct, designed to produce mRNA with self-complementarity, was much more effective than simple sense and antisense constructs at inducing silencing. Supertransforming rice calluses with a direct-repeat (d/r) construct, although not as effective as those with the i/r construct, was also substantially more effective in silencing the resident GUS gene than the simple sense and antisense constructs. DNA hybridisation analyses revealed that every callus line supertransformed with either simple sense or antisense constructs, and subsequently showing GUS silencing, had the silence-inducing transgenes integrated into the plant genome in inverted-repeat configurations. The silenced lines containing i/r and d/r constructs did not necessarily have inverted-repeat T-DNA insertions. There was significant methylation of the GUS sequences in most of the silenced lines but not in the unsilenced lines. However, demethylation treatment of silenced lines with 5-azacytidine did not reverse the post-transcriptional gene silencing (PTGS) of GUS. Whereas the levels of RNA specific to the resident GUS gene were uniformly low in the silenced lines, RNA specific to the inducer transgenes accumulated to a substantial level, and the majority of the i/r RNA was unpolyadenylated. Altogether, these results suggest that both sense- and antisense-mediated gene suppression share a similar molecular basis, that unpolyadenylated RNA plays an important role in PTGS, and that methylation is not essential for PTGS.
Resumo:
The expression patterns of GUS fusion constructs driven by the Agrobacterium rhizogenes RolC and the maize Sh (Shrunken: sucrose synthase-1) promoters were examined in transgenic potatoes (cv. Atlantic). RolC drove high-level gene expression in phloem tissue, bundle sheath cells and vascular parenchyma, but not in xylem or non-vascular tissues. Sh expression was exclusively confined to phloem tissue. Potato leafroll luteovirus (PLRV) replicates only in phloem tissues, and we show that when RolC is used to drive expression of the PLRV coat protein gene, virus-resistant lines can be obtained. In contrast, no significant resistance was observed when the Sh promoter was used.
Resumo:
The nucleotide sequence of DNA complementary to rice ragged stunt oryzavirus (RRSV) genome segment 8 (S8) of an isolate from Thailand was determined. RRSV S8 is 1 914 bp in size and contains a single large open reading frame (ORF) spanning nucleotides 23 to 1 810 which is capable of encoding a protein of M(r) 67 348. The N-terminal amino acid sequence of a ~43K virion polypeptide matched to that inferred for an internal region of the S8 coding sequence. These data suggest that the 43K protein is encoded by S8 and is derived by a proteolytic cleavage. Predicted polypeptide sizes from this possible cleavage of S8 protein are 26K and 42K. Polyclonal antibodies raised against a maltose binding protein (MBP)-S8 fusion polypeptide (expressed in Escherichia coli) recognised four RRSV particle associated polypeptides of M(r) 67K, 46K, 43K and 26K and all except the 26K polypeptide were also highly immunoreactive to polyclonal antibodies raised against purified RRSV particles. Cleavage of the MBP-S8 fusion polypeptide with protease Factor X produced the expected 40K MBP and two polypeptides of apparent M(r) 46K and 26K. Antibodies to purified RRSV particles reacted strongly with the intact fusion protein and the 46K cleavage product but weakly to the 26K product. Furthermore, in vitro transcription and translation of the S8 coding region revealed a post-translational self cleavage of the 67K polypeptide to 46K and 26K products. These data indicate that S8 encodes a structural polypeptide, the majority of which is auto- catalytically cleaved to 26K and 46K proteins. The data also suggest that the 26K protein is the self cleaving protease and that the 46K product is further processed or undergoes stable conformational changes to a ~43K major capsid protein.