941 resultados para Fusarium oxysporum f. sp. lycopersici


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusarium wilt of tomato, caused by the fungal pathogen, Fusarium oxysporum f. sp. lycopersici (Fol), is an economically damaging disease that results in huge losses in Australia and other countries worldwide. The I-3 gene, which confers resistance to Fol race 3, has been described in wild tomato, Lycopersicon pennellii, accessions LA716 and PI414773. We are pursuing the isolation of I-3 from LA716 by map-based cloning. We have constructed a high-resolution map of the I-3 region and have identified markers closely flanking I-3 as well as markers co-segregating with I-3. In addition, construction of a physical map based on these markers has been initiated. This review describes the context of our research and our progress towards isolating the I-3 gene. It also describes some important practical outcomes of our work, including the development and use of a PCR-based marker for marker-assisted selection for I-3, and the finding that the I-3 gene from LA716 is different to that from PI1414773, which we have now designated I-7. Tomato varieties combining I-3 and I-7 have been developed and are currently being introduced into commercial production to further safeguard tomato crops against Fusarium wilt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusarium oxysporum is a diverse, asexual fungal species composed of both saprophytic and pathogenic members. The destructive phytopathogens are classified into formae speciales based on the host species and into vegetative compatibility groups (VCGs) based on the ability of two individuals to form heterokaryons. Parasexuality, a non-sexual mode of genetic exchange unique to some fungi has been demonstrated in the laboratory in Fusarium oxysporum f. sp. cubense (FOC). The goals of this dissertation were threefold: to ascertain whether mitochondrial (mt) markers can distinguish race differences in FOC; to determine genetic relatedness of VCGs in FOC based on a mt marker; and to discover the mode of mt inheritance during a parasexual cycle.^ Band patterns produced by electrophoresis of Hae III digested genomic DNA indicated that VCG differences, not race, could be discerned by mtDNA analysis. Primers were designed to amplify a mt intergenic locus which served as a molecular marker to screen 55 strains of FOC in 16 VCGs using both single strand conformational polymorphism and DNA sequencing. Based on homogeneity of the locus, strains were assigned to seven mitotypes, a classification unit which I introduced and found informative for grouping related VCGs.^ To determine the mode of mt inheritance during a parasexual cycle, strains in different mitotypes were paired. Mitochondrial inheritance in all hybrid progeny was found to be uniparental. I speculated that if a parasexual cycle occurs in nature there would be greater variation in the nuclear genome than the mt. This could produce multiple VCGs within a mitotype, a phenomenon observed in FOC. Based on these data, I concluded that parasexuality in nature may contribute to the diversity observed in Fusarium oxysporum. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tomato I-3 gene introgressed from the Lycopersicon pennellii accession LA716 confers resistance to race 3 of the fusarium wilt pathogen Fusarium oxysporum f. sp. lycopersici. We have improved the high-resolution map of the I-3 region of tomato chromosome 7 with the development and mapping of 31 new PCR-based markers. Recombinants recovered from L. esculentum cv. M82 × IL7-2 F2 and (IL7-2 × IL7-4) × M82 TC1F2 mapping populations, together with recombinants recovered from a previous M82 × IL7-3 F2 mapping population, were used to position these markers. A significantly higher recombination frequency was observed in the (IL7-2 × IL7-4) × M82 TC1F2 mapping population based on a reconstituted L. pennellii chromosome 7 compared to the other two mapping populations based on smaller segments of L. pennellii chromosome 7. A BAC contig consisting of L. esculentum cv. Heinz 1706 BACs covering the I-3 region has also been established. The new high-resolution map places the I-3 gene within a 0.38 cM interval between the molecular markers RGA332 and bP23/gPT with an estimated physical size of 50-60 kb. The I-3 region was found to display almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with Arabidopsis thaliana chromosomes 1, 2 and 3. An S-receptor-like kinase gene family present in the I-3 region of tomato chromosome 7 was found to be present in the microsyntenous region of grape chromosome 12 but was absent altogether from the A. thaliana genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A preservação de fungos fitopatogênicos por longos períodos de tempo é importante para que pesquisas possam ser realizadas a qualquer momento. Os fungos habitantes do solo são organismos que podem produzir estruturas de resistência em face de situações adversas, tais como ausência de hospedeiros e ou condições climáticas desfavoráveis para a sua sobrevivência. O objetivo deste trabalho foi desenvolver metodologias de preservação de estruturas de resistência para os fungos Fusarium oxysporum f.sp. lycopersici raça 2, Macrophomina phaseolina, Rhizoctonia solani AG4 HGI, Sclerotium rolfsii, Sclerotinia sclerotiorum e Verticillium dahliae. O delineamento foi inteiramente casualizado, com um método de produção de estruturas para cada fungo, submetido a três tratamentos [temperatura ambiente de laboratório (28±2ºC), de geladeira (5ºC) e de freezer (-20ºC)] e com dois frascos por temperatura. Mensalmente, e por um período de um ano, a sobrevivência e o vigor das colônias de cada patógeno foram avaliadas em meios de cultura espeficos. Testes de patogenicidade foram realizados após um ano de preservação, com as estruturas que sobreviveram aos melhores tratamentos (temperatura) para todos os fungos. As melhores temperaturas (tratamentos) para preservar os fungos foram: a) F. oxysporum f.sp. lycopersici em temperatura de refrigeração e de freezer (5,2 e 2,9 x 10³ufc.g-1 de talco, respectivamente); b) M. phaseolina em temperatura de refrigeração [100% de sobrevivência (S) e índice 3 de vigor (V)] e S. rolfsii em temperatura ambiente (74,4% S e 1 V) e c) S. sclerotiorum e V. dahliae, ambos em temperatura de freezer (100% S e 3 V). Após um ano de preservação, somente V. dahliae perdeu a patogenicidade na metodologia desenvolvida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os fungos fitopatogênicos habitantes do solo podem sobreviver por vários anos nesse ambiente por meio de estruturas de resistência, causando perdas em muitas culturas, por vezes, inviabilizando o pleno aproveitamento de vastas áreas agrícolas. O uso de materiais orgânicos no solo consorciado com a técnica de solarização propicia a retenção de compostos voláteis fungitóxicos emanados da rápida degradação dos materiais e que são letais a vários fitopatógenos. O objetivo deste experimento foi à prospecção de novos materiais orgânicos que produzissem voláteis fungitóxicos capazes de controlar fungos fitopatogênicos habitantes do solo, em condições de associação com a simulação da técnica de solarização (microcosmo). Portanto, o presente trabalho consistiu de seis tratamentos (Solarizado; Solarizado+Brócolos; Solarizado+Eucalipto; Solarizado+Mamona; Solarizado+Mandioca e Laboratório) e cinco períodos (0, 7, 14, 21 e 28 dias) para avaliar a sobrevivência de quatro fungos de solo (Fusarium oxysporum f. sp. lycopersici Raça 2; Macrophomina phaseolina; Rhizoctonia solani AG-4 HGI e Sclerotium rolfsii). em cada uma das duas câmaras de vidro (microcosmo) por dia avaliado continha uma bolsa de náilon contendo as estruturas de resistência de cada fitopatógeno. Estruturas dos fitopatógenos foram mantidas também em condições de laboratório como referencial de controle. Todos os materiais quando associados à simulação da solarização propiciaram o controle de todos os fitopatógenos estudados, entretanto, foi observado variação no controle dos fungos. O tratamento que apenas simulou a solarização não controlou nenhum fitopatógeno.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A incorporação de material orgânico associada à solarização do solo é uma técnica promissora no controle de patógenos de plantas. O trabalho consistiu na prospecção de materiais vegetais promissores na produção de voláteis fungitóxicos capazes de inviabilizar as estruturas de resistência de fitopatógenos do solo. em condição de campo foram incorporados 3 Kg/m² de folhas e ramos de brócolos, eucalipto, mamona e mandioca brava, associada ou não à solarização, visando o controle de Fusarium oxysporum f. sp. lycopersici raça 2; Macrophomina phaseolina; Rhizoctonia solani AG-4 HGI e Sclerotium rolfsii. O controle foi avaliado por meio da sobrevivência das estruturas, em meios semi-seletivo espeficos, aos 7, 14, 21 e 28 dias do início do experimento. Foram monitoradas as temperaturas do solo e do ar por um DataLogger Tipo CR23X (Campbell Scientific) e a porcentagem de CO2 e de O2 pelo equipamento analisador de gases (Testo 325-1). A associação da incorporação dos materiais vegetais com a solarização do solo inativou F. oxysporum f. sp. lycopersici raça 2, M. phaseolina e R. solani. O fungo S. rolfsii foi o único que não apresentou 100% de controle com solarização mais mamona durante o período estudado. A incorporação de mandioca seguido de solarização propiciou o controle de todos os fungos estudados com menos de sete dias da instalação do experimento, sendo tão eficiente quanto o brócolos na erradicação dos fitopatógenos veiculados pelo sol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Horticultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actualmente, la reducción de materias activas (UE) y la implantación de la nueva Directiva comunitaria 2009/128/ que establece el marco de actuación para conseguir un uso sostenible de los plaguicidas químicos y la preferencia de uso de métodos biológicos, fsicos y otros no químicos, obliga a buscar métodos de control menos perjudiciales para el medio ambiente. El control biológico (CB) de enfermedades vegetales empleando agentes de control biológico (ACB) se percibe como una alternativa más segura y con menor impacto ambiental, bien solos o bien como parte de una estrategia de control integrado. El aislado 212 de Penicillium oxalicum (PO212) (ATCC 201888) fue aislado originalmente de la micoflora del suelo en España y ha demostrado ser un eficaz ACB frente a la marchitez vascular del tomate. Una vez identificado y caracterizado el ACB se inició el periodo de desarrollo del mismo poniendo a punto un método de producción en masa de sus conidias. Tras lo cual se inició el proceso de formulación del ACB deshidratando las conidias para su preservación durante un período de tiempo mayor mediante lecho fluido. Finalmente, se han desarrollado algunos formulados que contienen de forma individual diferentes aditivos que han alargado su viabilidad, estabilidad y facilitado su manejo y aplicación. Sin embargo, es necesario seguir trabajando en la mejora de su eficacia de biocontrol. El primer objetivo de esta Tesis se ha centrado en el estudio de la interacción ACB-patógeno-huésped que permita la actuación de P.oxalicum en diferentes patosistemas. Uno de los primeros puntos que se abordan dentro de este objetivo es el desarrollo de nuevas FORMULACIONES del ACB que incrementen su eficacia frente a la marchitez vascular del tomate. Las conidias formuladas de PO212 se obtuvieron por la adición conjunta de distintos aditivos (mojantes, adherentes o estabilizantes) en dos momentos diferentes del proceso de producción/secado: i) antes del proceso de producción (en la bolsa de fermentación) en el momento de la inoculación de las bolsas de fermentación con conidias de PO212 o ii) antes del secado en el momento de la resuspensión de las conidias tras su centrifugación. De las 22 nuevas formulaciones desarrolladas y evaluadas en plantas de tomate en ensayos en invernadero, seis de ellas (FOR22, FOR25, FOR32, FOR35, FOR36 y FOR37) mejoran significativamente (P=0,05) el control de la marchitez vascular del tomate con respecto al obtenido con las conidias secas de P.oxalicum sin aditivos (CSPO) o con el fungicida Bavistin. Los formulados que mejoran la eficacia de las conidias secas sin aditivos son aquellos que contienen como humectantes alginato sódico en fermentación, seguido de aquellos que contienen glicerol como estabilizante en fermentación, y metil celulosa y leche desnatada como adherentes antes del secado. Además, el control de la marchitez vascular del tomate por parte de los formulados de P. oxalicum está relacionado con la fecha de inicio de la enfermedad. Otra forma de continuar mejorando la eficacia de biocontrol es mejorar la materia activa mediante la SELECCIÓN DE NUEVAS CEPAS de P. oxalicum, las cuales podrían tener diferentes niveles de eficacia. De entre las 28 nuevas cepas de P. oxalicum ensayadas en cámara de cultivo, sólo el aislado PO15 muestra el mismo nivel de eficacia que PO212 (62-67% de control) frente a la marchitez vascular del tomate en casos de alta presión de enfermedad. Mientras que, en casos de baja presión de enfermedad todas las cepas de P. oxalicum y sus mezclas demuestran ser eficaces. Finalmente, se estudia ampliar el rango de actuación de este ACB a OTROS HUÉSPEDES Y OTROS PATÓGENOS Y DIFERENTES GRADOS DE VIRULENCIA. En ensayos de eficacia de P. oxalicum frente a aislados de diferente agresividad de Verticillium spp. y Fusarium oxysporum f. sp. lycopersici en plantas de tomate en cámaras de cultivo, se demuestra que la eficacia de PO212 está negativamente correlacionada con el nivel de enfermedad causada por F. oxysporum f. sp. lycopersici pero que no hay ningún efecto diferencial en la reducción de la incidencia ni de la gravedad según la virulencia de los aislados. Sin embargo, en los ensayos realizados con V. dahliae, PO212 causa una mayor reducción de la enfermedad en las plantas inoculadas con aislados de virulencia media. La eficacia de PO212 también era mayor frente a aislados de virulencia media alta de F. oxysporum f. sp. melonis y F. oxysporum f. sp. niveum, en plantas de melón y sandía, respectivamente. En ambos huéspedes se demuestra que la dosis óptima de aplicación del ACB es de 107 conidias de PO212 g-1 de suelo de semillero, aplicada 7 días antes del trasplante. Además, entre 2 y 4 nuevas aplicaciones de PO212 a la raíces de las plantas mediante un riego al terreno de asiento mejoran la eficacia de biocontrol. La eficacia de PO212 no se limita a hongos patógenos vasculares como los citados anteriormente, sino también a otros patógenos como: Phytophthora cactorum, Globodera pallida y G. rostochiensis. PO212 reduce significativamente los síntomas (50%) causados por P. cactorum en plantas de vivero de fresa, tras la aplicación del ACB por inmersión de las raíces antes de su trasplante al suelo de viveros comerciales. Por otra parte, la exposición de los quistes de Globodera pallida y G. rostochiensis (nematodos del quiste de la patata) a las conidias de P. oxalicum, en ensayos in vitro o en microcosmos de suelo, reduce significativamente la capacidad de eclosión de los huevos. Para G. pallida esta reducción es mayor cuando se emplean exudados de raíz de patata del cv. 'Monalisa', que exudados de raíz del cv. 'Desirée'. No hay una reducción significativa en la tasa de eclosión con exudados de raíz de tomate del cv. 'San Pedro'. Para G. rostochiensis la reducción en la tasa de eclosión de los huevos se obtiene con exudados de la raíz de patata del cv. 'Desirée'. El tratamiento con P. oxalicum reduce también significativamente el número de quistes de G. pallida en macetas. Con el fin de optimizar la aplicación práctica de P. oxalicum cepa 212 como tratamiento biológico del suelo, es esencial entender cómo el entorno fsico influye en la capacidad de colonización, crecimiento y supervivencia del mismo, así como el posible riesgo que puede suponer su aplicación sobre el resto de los microorganismos del ecosistema. Por ello en este segundo objetivo de esta tesis se estudia la interacción del ACB con el medio ambiente en el cual se aplica. Dentro de este objetivo se evalúa la INFLUENCIA DE LA TEMPERATURA, DISPONIBILIDAD DE AGUA Y PROPIEDADES FSICO-QUÍMICAS DE LOS SUELOS (POROSIDAD, TEXTURA, DENSIDAD...) SOBRE LA SUPERVIVENCIA Y EL CRECIMIENTO DE PO212 en condiciones controladas elaborando modelos que permitan predecir el impacto de cada factor ambiental en la supervivencia y crecimiento de P. oxalicum y conocer su capacidad para crecer y sobrevivir en diferentes ambientes. En las muestras de suelo se cuantifica: i) la supervivencia de Penicillium spp. usando el recuento del número de unidades formadoras de colonias en un medio de cultivo semi-selectivo y ii) el crecimiento (biomasa) de PO212 mediante PCR en tiempo real. En los resultados obtenidos se demuestra que P. oxalicum crece y sobrevive mejor en condiciones de sequía independientemente de la temperatura y del tipo de suelo. Si comparamos tipos de suelo P. oxalicum crece y sobrevive en mayor medida en suelos areno-arcillosos con un bajo contenido en materia orgánica, un mayor pH y una menor disponibilidad de fsforo y nitrógeno. La supervivencia y el crecimiento de P. oxalicum se correlaciona de forma negativa con la disponibilidad de agua y de forma positiva con el contenido de materia orgánica. Sólo la supervivencia se correlaciona también positivamente con el pH. Por otro lado se realizan ensayos en suelos de huertos comerciales con diferentes propiedades fsico-químicas y diferentes condiciones ambientales para ESTUDIAR EL ESTABLECIMIENTO, SUPERVIVENCIA Y DISPERSIÓN VERTICAL Y MOVILIDAD HORIZONTAL DE PO212. P. oxalicum 212 puede persistir y sobrevivir en esos suelos al menos un año después de su liberación pero a niveles similares a los de otras especies de Penicillium indígenas presentes en los mismos suelos naturales. Además, P. oxalicum 212 muestra una dispersión vertical y movilidad horizontal muy limitada en los diferentes tipos de suelo evaluados. La introducción de P. oxalicum en un ambiente natural no sólo implica su actuación sobre el microorganismo diana, el patógeno, si no también sobre otros microorganismos indígenas. Para EVALUAR EL EFECTO DE LA APLICACIÓN DE P. oxalicum SOBRE LAS POBLACIONES FNGICAS INDIGENAS PRESENTES EN EL SUELO de dos huertos comerciales, se analizan mediante electroforesis en gradiente desnaturalizante de poliacrilamida (DGGE) muestras de dichos suelos a dos profundidades (5 y 10 cm) y a cuatro fechas desde la aplicación de P. oxalicum 212 (0, 75, 180 y 365 días). El análisis de la DGGE muestra que las diferencias entre las poblaciones fngicas se deben significativamente a la fecha de muestreo y son independientes del tratamiento aplicado y de la profundidad a la que se tomen las muestras. Luego, la aplicación del ACB no afecta a la población fngica de los dos suelos analizados. El análisis de las secuencias de la DGGE confirma los resultados anteriores y permiten identificar la presencia del ACB en los suelos. La presencia de P. oxalicum en el suelo se encuentra especialmente relacionada con factores ambientales como la humedad. Por tanto, podemos concluir que Penicillium oxalicum cepa 212 puede considerarse un óptimo Agente de Control Biológico (ACB), puesto que es ecológicamente competitivo, eficaz para combatir un amplio espectro de enfermedades y no supone un riesgo para el resto de microorganismos fngicos no diana presentes en el lugar de aplicación. ABSTRACT Currently, reduction of active (EU) and the implementation of the new EU Directive 2009/128 which establishing the framework for action to achieve the sustainable use of chemical pesticides and preference of use of biological, physical and other non-chemical methods, forces to look for control methods less harmful to the environment. Biological control (CB) of plant diseases using biological control agents (BCA) is perceived as a safer alternative and with less environmental impact, either alone or as part of an integrated control strategy. The isolate 212 of Penicillium oxalicum (PO212) (ATCC 201888) was originally isolated from the soil mycoflora in Spain. P. oxalicum is a promising biological control agent for Fusarium wilt and other tomato diseases. Once identified and characterized the BCA, was developed a mass production method of conidia by solid-state fermentation. After determined the process of obtaining a formulated product of the BCA by drying of product by fluid-bed drying, it enables the preservation of the inoculum over a long period of time. Finally, some formulations of dried P. oxalicum conidia have been developed which contain one different additive that have improved their viability, stability and facilitated its handling and application. However, further work is needed to improve biocontrol efficacy. The first objective of this thesis has focused on the study of the interaction BCA- pathogen-host, to allow P.oxalicum to work in different pathosystems. The first point to be addressed in this objective is the development of new FORMULATIONS of BCA which increase their effectiveness against vascular wilt of tomato. PO212 conidial formulations were obtained by the joint addition of various additives (wetting agents, adhesives or stabilizers) at two different points of the production-drying process: i) to substrate in the fermentation bags before the production process, and (ii) to conidial paste obtained after production but before drying. Of the 22 new formulations developed and evaluated in tomato plants in greenhouse tests, six of them (FOR22 , FOR25 , FOR32 , FOR35 , FOR36 and FOR3) improved significantly (P = 0.05) the biocontrol efficacy against tomato wilt with respect to that obtained with dried P.oxalicum conidia without additives (CSPO) or the fungicide Bavistin. The formulations that improve the efficiency of dried conidia without additives are those containing as humectants sodium alginate in the fermentation bags, followed by those containing glycerol as a stabilizer in the fermentation bags, and methylcellulose and skimmed milk as adherents before drying. Moreover, control of vascular wilt of tomatoes by PO212 conidial formulations is related to the date of disease onset. Another way to further improve the effectiveness of biocontrol is to improve the active substance by SELECTION OF NEW STRAINS of P. oxalicum, which may have different levels of effectiveness. Of the 28 new strains of P. oxalicum tested in a culture chamber, only PO15 isolate shows the same effectiveness that PO212 (62-67 % of control) against tomato vascular wilt in cases of high disease pressure. Whereas in cases of low disease pressure all strains of P. oxalicum and its mixtures effective. Finally, we study extend the range of action of this BCA TO OTHER GUESTS AND OTHER PATHOGENS AND DIFFERENT DEGREES OF VIRULENCE. In efficacy trials of P. oxalicum against isolates of different aggressiveness of Verticillium spp. and Fusarium oxysporum f. sp. lycopersici in tomato plants in growth chambers, shows that the efficiency of PO212 is negatively correlated with the level of disease caused by F. oxysporum f. sp. lycopersici. There is not differential effect in reducing the incidence or severity depending on the virulence of isolates. However, PO212 cause a greater reduction of disease in plants inoculated with virulent isolates media of V. dahlia. PO212 efficacy was also higher against isolates of high and average virulence of F. oxysporum f. sp. melonis and F. oxysporum f. sp. niveum in melon and watermelon plants, respectively. In both hosts the optimum dose of the BCA application is 107 conidia PO212 g-1 soil, applied on seedlings 7 days before transplantation into the field. Moreover, the reapplication of PO212 (2-4 times) to the roots by irrigation into the field improve efficiency of biocontrol. The efficacy of PO212 is not limited to vascular pathogens as those mentioned above, but also other pathogens such as Oomycetes (Phytophthora cactorum) and nematodes (Globodera pallida and G. rostochiensis). PO212 significantly reduces symptoms (50 %) caused by P. cactorum in strawberry nursery plants after application of BCA by dipping the roots before transplanting to soil in commercial nurseries. Moreover, the exposure of G. pallida and G. rostochiensis cysts to the conidia of P. oxalicum, in in vitro assays or in soil microcosms significantly reduces hatchability of eggs. The reduction in the rate of G. pallida juveniles hatching was greatest when root diffusates from the `Monalisa´ potato cultivar were used, followed by root diffusates from the `Désirée´ potato cultivar. However, no significant reduction in the rate of G. pallida juveniles hatching was found when root diffusates from the ‘San Pedro” tomato cultivar were used. For G. rostochiensis reduction in the juveniles hatching is obtained from the root diffusates 'Desirée' potato cultivar. Treatment with P. oxalicum also significantly reduces the number of cysts of G. pallida in pots. In order to optimize the practical application of P. oxalicum strain 212 as a biological soil treatment, it is essential to understand how the physical environment influences the BCA colonization, survival and growth, and the possible risk that can cause its application on other microorganisms in the ecosystem of performance. Therefore, the second objective of this thesis is the interaction of the BCA with the environment in which it is applied. Within this objective is evaluated the INFLUENCE OF TEMPERATURE, WATER AVAILABILITY AND PHYSICAL-CHEMICAL PROPERTIES OF SOILS (POROSITY, TEXTURE, DENSITY...) ON SURVIVAL AND GROWTH OF PO212 under controlled conditions to develop models for predicting the environmental impact of each factor on survival and growth of P. oxalicum and to know their ability to grow and survive in different environments. Two parameters are evaluated in the soil samples: i) the survival of Penicillium spp. by counting the number of colony forming units in semi-selective medium and ii) growth (biomass) of PO212 by real-time PCR. P. oxalicum grows and survives better in drought conditions regardless of temperature and soil type. P. oxalicum grows and survives more in sandy loam soils with low organic matter content, higher pH and lower availability of phosphorus and nitrogen. Survival and growth of P. oxalicum negatively correlates with the availability of water and positively with the organic content. Only survival also correlated positively with pH. Moreover, trials are carried out into commercial orchards soils with different physic-chemical properties and different environmental conditions TO STUDY THE ESTABLISHMENT, SURVIVAL, VERTICAL DISPERSION AND HORIZONTAL SPREAD OF PO212. P. oxalicum 212 can persist and survive at very low levels in soil one year after its release. The size of the PO212 population after its release into the tested natural soils is similar to that of indigenous Penicillium spp. Furthermore, the vertical dispersion and horizontal spread of PO212 is limited in different soil types. The introduction of P. oxalicum in a natural environment not only involves their action on the target organism, the pathogen, but also on other indigenous microorganisms. TO ASSESS THE EFFECT OF P. oxalicum APPLICATION ON SOIL INDIGENOUS FUNGAL COMMUNITIES in two commercial orchards, soil samples are analyzed by Denaturing Gradient Gel Electrophoresis polyacrylamide (DGGE). Samples are taken from soil at two depths (5 and 10 cm) and four dates from the application of P. oxalicum 212 (0, 75, 180 and 365 days). DGGE analysis shows that differences are observed between sampling dates and are independent of the treatment of P. oxalicum applied and the depth. BCA application does not affect the fungal population of the two soil analyzed. Sequence analysis of the DGGE bands confirms previous findings and to identify the presence of BCA on soils. The presence of P. oxalicum in soil is especially related to environmental factors such as humidity. Therefore, we conclude that the 212 of strain Penicillium oxalicum can be considered an optimum BCA, since it is environmentally competitive and effective against a broad spectrum of diseases and does not have any negative effect on soil non-target fungi communities.