952 resultados para Fungicides - Physiological effect


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction : Chez les nouveau-nés prématurés, l’hyper-alimentation intraveineuse (HAIV) contribue à leur survie, mais elle est aussi une source importante de molécules oxydantes. L’absence d’une protection adéquate contre la lumière ambiante génère in vitro, via la photo-excitation de la riboflavine, du H2O2, des peroxydes organiques et un dérivé peroxydé de la vitamine C, l’ascorbylperoxyde (AscOOH). Plusieurs données du laboratoire associent l’infusion d’HAIV à des désordres lipidiques dans notre modèle animal. L’hypothèse est donc que l’AscOOH a un pouvoir oxydant et est responsable de certains des effets biologiques observés. Mes objectifs sont les suivants : 1) développer une méthode de dosage de l’AscOOH; 2) démontrer, à l’aide du modèle animal bien établi au laboratoire, des relations entre la concentration tissulaire de cette molécule et des paramètres métaboliques et l’état redox au foie et dans la circulation; et 3) confirmer l’effet physiologique de l’AscOOH dans un modèle cellulaire. Méthode : Différents étalons internes potentiels ont été testés pour le dosage de l’AscOOH par spectrométrie de masse après séparation sur HPLC (LC-MS). Les phases mobiles et conditions chromatographiques ont été optimisées. Pour l’objectif 2, des cobayes de 3 jours de vie (n=11) ont reçu par voie intraveineuse une dose d’AscOOH (entre 0 et 3,3mM). Les animaux ont été sacrifiés au 4e jour de traitement pour le prélèvement de tissus. Les concentrations tissulaires d’AscOOH ont été déterminées au LC-MS. La triglycéridémie et la cholestérolémie ont été mesurées à l’aide d’un kit commercial par spectrophotométrie. Le glutathion oxydé et réduit ont été mesurés par électrophorèse capillaire. Les relations linéaires obtenues sont exprimées par le ratio des carrés (r2), et traitées par ANOVA. Résultats : La validation du dosage de l’AscOOH par LC-MS a été réalisée. Chez les animaux, la concentration urinaire d’AscOOH par créatinine corrèle positivement avec la dose reçue, négativement avec la lipidémie, et négativement avec le redox sanguin et érythrocytaire, indiquant un milieu moins oxydé. Conclusion : La concentration urinaire d’AscOOH peut donc être un reflet de l’oxydation de l’HAIV en clinique. Nos données chez l’animal suggèrent une interaction de l’AscOOH avec le métabolisme hépatique produisant une chute de la concentration plasmatique de cholestérol et de triglycérides. Le modèle cellulaire n’a pas permis d’élucider le mécanisme moléculaire de l’action de l’AscOOH sur le métabolisme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En l’alè humà han estat identificats més de tres mil compostos químics. Si el món és pura química, del que expirem en podem arribar a construir un mapa del lloc en què vivim i, també, de com vivim. La conseqüència és que a l’alè també hi podem trobar rastres de certes malalties. Investigadors de la UdG i de l’IdIBG han assolit una primera passa en aquest sentit, perquè han aconseguit demostrar l’existència d’un biomarcador de fumadors a l’alè

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Case-crossover is one of the most used designs for analyzing the health-related effects of air pollution. Nevertheless, no one has reviewed its application and methodology in this context. Objective: We conducted a systematic review of case-crossover (CCO) designs used to study the relationship between air pollution and morbidity and mortality, from the standpoint of methodology and application.Data sources and extraction: A search was made of the MEDLINE and EMBASE databases.Reports were classified as methodologic or applied. From the latter, the following information was extracted: author, study location, year, type of population (general or patients), dependent variable(s), independent variable(s), type of CCO design, and whether effect modification was analyzed for variables at the individual level. Data synthesis: The review covered 105 reports that fulfilled the inclusion criteria. Of these, 24 addressed methodological aspects, and the remainder involved the design’s application. In the methodological reports, the designs that yielded the best results in simulation were symmetric bidirectional CCO and time-stratified CCO. Furthermore, we observed an increase across time in the use of certain CCO designs, mainly symmetric bidirectional and time-stratified CCO. The dependent variables most frequently analyzed were those relating to hospital morbidity; the pollutants most often studied were those linked to particulate matter. Among the CCO-application reports, 13.6% studied effect modification for variables at the individual level.Conclusions: The use of CCO designs has undergone considerable growth; the most widely used designs were those that yielded better results in simulation studies: symmetric bidirectional and time-stratified CCO. However, the advantages of CCO as a method of analysis of variables at the individual level are put to little use

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We performed an ensemble of twelve five-year experiments using a coupled climate-carbon-cycle model with scenarios of prescribed atmospheric carbon dioxide concentration; CO2 was instantaneously doubled or quadrupled at the start of the experiments. Within these five years, climate feedback is not significantly influenced by the effects of climate change on the carbon system. However, rapid changes take place, within much less than a year, due to the physiological effect of CO2 on plant stomatal conductance, leading to adjustment in the shortwave cloud radiative effect over land, due to a reduction in low cloud cover. This causes a 10% enhancement to the radiative forcing due to CO2, which leads to an increase in the equilibrium warming of 0.4 and 0.7 K for doubling and quadrupling. The implications for calibration of energy-balance models are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The inaugural meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) was held May 3 to May 5 2002 in London, Ontario, Canada. A group of 63 academic and industrial scientists from around the world convened to discuss current issues in the science of probiotics and prebiotics. ISAPP is a non-profit organization comprised of international scientists whose intent is to strongly support and improve the levels of scientific integrity and due diligence associated with the study, use, and application of probiotics and prebiotics. In addition, ISAPP values its role in facilitating communication with the public and healthcare providers and among scientists in related fields on all topics pertinent to probiotics and prebiotics. It is anticipated that such efforts will lead to development of approaches and products that are optimally designed for the improvement of human and animal health and well being. This article is a summary of the discussions, conclusions, and recommendations made by 8 working groups convened during the first ISAPP workshop focusing on the topics of: definitions, intestinal flora, extra-intestinal sites, immune function, intestinal disease, cancer, genetics and genomics, and second generation prebiotics. Humans have evolved in symbiosis with an estimated 1014 resident microorganisms. However, as medicine has widely defined and explored the perpetrators of disease, including those of microbial origin, it has paid relatively little attention to the microbial cells that constitute the most abundant life forms associated with our body. Microbial metabolism in humans and animals constitutes an intense biochemical activity in the body, with profound repercussions for health and disease. As understanding of the human genome constantly expands, an important opportunity will arise to better determine the relationship between microbial populations within the body and host factors (including gender, genetic background, and nutrition) and the concomitant implications for health and improved quality of life. Combined human and microbial genetic studies will determine how such interactions can affect human health and longevity, which communication systems are used, and how they can be influenced to benefit the host. Probiotics are defined as live microorganisms which, when administered in adequate amounts confer a health benefit on the host.1 The probiotic concept dates back over 100 years, but only in recent times have the scientific knowledge and tools become available to properly evaluate their effects on normal health and well being, and their potential in preventing and treating disease. A similar situation exists for prebiotics, defined by this group as non-digestible substances that provide a beneficial physiological effect on the host by selectively stimulating the favorable growth or activity of a limited number of indigenous bacteria. Prebiotics function complementary to, and possibly synergistically with, probiotics. Numerous studies are providing insights into the growth and metabolic influence of these microbial nutrients on health. Today, the science behind the function of probiotics and prebiotics still requires more stringent deciphering both scientifically and mechanistically. The explosion of publications and interest in probiotics and prebiotics has resulted in a body of collective research that points toward great promise. However, this research is spread among such a diversity of organisms, delivery vehicles (foods, pills, and supplements), and potential health targets such that general conclusions cannot easily be made. Nevertheless, this situation is rapidly changing on a number of important fronts. With progress over the past decade on the genetics of lactic acid bacteria and the recent, 2,3 and pending, 4 release of complete genome sequences for major probiotic species, the field is now armed with detailed information and sophisticated microbiological and bioinformatic tools. Similarly, advances in biotechnology could yield new probiotics and prebiotics designed for enhanced or expanded functionality. The incorporation of genetic tools within a multidisciplinary scientific platform is expected to reveal the contributions of commensals, probiotics, and prebiotics to general health and well being and explicitly identify the mechanisms and corresponding host responses that provide the basis for their positive roles and associated claims. In terms of human suffering, the need for effective new approaches to prevent and treat disease is paramount. The need exists not only to alleviate the significant mortality and morbidity caused by intestinal diseases worldwide (especially diarrheal diseases in children), but also for infections at non-intestinal sites. This is especially worthy of pursuit in developing nations where mortality is too often the outcome of food and water borne infection. Inasmuch as probiotics and prebiotics are able to influence the populations or activities of commensal microflora, there is evidence that they can also play a role in mitigating some diseases. 5,6 Preliminary support that probiotics and prebiotics may be useful as intervention in conditions including inflammatory bowel disease, irritable bowel syndrome, allergy, cancer (especially colorectal cancer of which 75% are associated with diet), vaginal and urinary tract infections in women, kidney stone disease, mineral absorption, and infections caused by Helicobacter pylori is emerging. Some metabolites of microbes in the gut may also impact systemic conditions ranging from coronary heart disease to cognitive function, suggesting the possibility that exogenously applied microbes in the form of probiotics, or alteration of gut microecology with prebiotics, may be useful interventions even in these apparently disparate conditions. Beyond these direct intervention targets, probiotic cultures can also serve in expanded roles as live vehicles to deliver biologic agents (vaccines, enzymes, and proteins) to targeted locations within the body. The economic impact of these disease conditions in terms of diagnosis, treatment, doctor and hospital visits, and time off work exceeds several hundred billion dollars. The quality of life impact is also of major concern. Probiotics and prebiotics offer plausible opportunities to reduce the morbidity associated with these conditions. The following addresses issues that emerged from 8 workshops (Definitions, Intestinal Flora, Extra-Intestinal Sites, Immune Function, Intestinal Disease, Cancer, Genomics, and Second Generation Prebiotics), reflecting the current scientific state of probiotics and prebiotics. This is not a comprehensive review, however the study emphasizes pivotal knowledge gaps, and recommendations are made as to the underlying scientific and multidisciplinary studies that will be required to advance our understanding of the roles and impact of prebiotics, probiotics, and the commensal microflora upon health and disease management.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atmospheric CO2 concentration is hypothesized to influence vegetation distribution via tree–grass competition, with higher CO2 concentrations favouring trees. The stable carbon isotope (δ13C) signature of vegetation is influenced by the relative importance of C4 plants (including most tropical grasses) and C3 plants (including nearly all trees), and the degree of stomatal closure – a response to aridity – in C3 plants. Compound-specific δ13C analyses of leaf-wax biomarkers in sediment cores of an offshore South Atlantic transect are used here as a record of vegetation changes in subequatorial Africa. These data suggest a large increase in C3 relative to C4 plant dominance after the Last Glacial Maximum. Using a process-based biogeography model that explicitly simulates 13C discrimination, it is shown that precipitation and temperature changes cannot explain the observed shift in δ13C values. The physiological effect of increasing CO2 concentration is decisive, altering the C3/C4 balance and bringing the simulated and observed δ13C values into line. It is concluded that CO2 concentration itself was a key agent of vegetation change in tropical southern Africa during the last glacial–interglacial transition. Two additional inferences follow. First, long-term variations in terrestrial δ13Cvalues are not simply a proxy for regional rainfall, as has sometimes been assumed. Although precipitation and temperature changes have had major effects on vegetation in many regions of the world during the period between the Last Glacial Maximum and recent times, CO2 effects must also be taken into account, especially when reconstructing changes in climate between glacial and interglacial states. Second, rising CO2 concentration today is likely to be influencing tree–grass competition in a similar way, and thus contributing to the "woody thickening" observed in savannas worldwide. This second inference points to the importance of experiments to determine how vegetation composition in savannas is likely to be influenced by the continuing rise of CO2 concentration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought-tolerant biomes in the tropics. These features are broadly consistent with pollen-based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought-tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low-latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial-interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To date there are no analytical techniques designed to exclusively measure bioavailable iron in marine environments. The goal of this research is to develop such a technique by isolating the bioavailable iron using the terrestrial siderophore desferrioxamine B (DFB). This project contained many challenging aspects, but the specific goal of this study was to develop a robust analytical technique for quantification of Fe(III)-DFB complexes at nanomolar concentrations. Past work showed that oxalate (Ox) promotes photodissociation of Fe(III)-DFB to Fe(Il), and we are specifically interested in the mechanism of this process. A model was developed using known thermodynamic constants for Fe(III)-DFB and Fe(III) oxalato complexes and adjusting for ionic strength. The model was confirmed by monitoring the UV-VIS absorbance of the system at a variety of oxalate concentrations and pH. The model did not include ternary complexes. Next., the rate of Fe(1I) production during UV irradiation was examined. The results showed that the rate of Fe(II) production was based entirely on the [Fe(Ox)?]3- speciation, and that reoxidation of Fe(II) occurred via reactive oxygen intermediates. This reoxidation could be avoided by either decreasing the oxygen concentration or by adding a Fe(II) stabilizing reagent, such as ferrozine. Further studies need to be done to confirm that these results apply at sub nanomolar concentrations, and the issue of Fe(II) reoxidation at lower Fe concentrations needs to be addressed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine hormone produced by the pineal gland that works to regulate sleep/wake cycles and activity rhythms. The effects of melatonin in metabolism are far from understood. Melatonin was injected into the fiddler crab, Uca pugilator, to investigate the effects of melatonin on hemolymph glucose and lactate levels. Following injection at t=O, hemolymph samples were collected at t=O.5, 1.0, 1.5 and 5.0 hours. Melatonin caused a decrease in the stress response to injection and also caused delayed hyperglycemia. Melatonin-injected crabs also retained the glucose and lactate rhythymicity when compared to saline-injected crabs. Glucose and lactate rhythms followed the same pattern indicating that the cycles are coupled. Also, melatonin was synthesized using tbe Fischer Indole synthesis and characterized using H?NMR. The synthetic melatonin demonstrated biological activity when injected into the crabs as when compared to pure melatonin on the effects on glucose and lactate concentrations. Overall, melatonin influences both glucose metabolism and the production of lactate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The metabolic fate of dietary n-3 docosapentaenoic acid (DPA) in mammals is currently unknown. The aim of the present study was to determine the extent of conversion of dietary DPA to DHA and EPA in rats. Four groups of male weanling Sprague–Dawley rats (aged 5 weeks) were given 50 mg of DPA, EPA, DHA or oleic acid, daily for 7 d by gavage. At the end of the treatment period, the tissues were analysed for concentrations of long-chain PUFA. DPA supplementation led to significant increases in DPA concentration in all tissues, with largest increase being in adipose (5-fold) and smallest increase being in brain (1·1-fold). DPA supplementation significantly increased the concentration of DHA in liver and the concentration of EPA in liver, heart and skeletal muscle, presumably by the process of retroconversion. EPA supplementation significantly increased the concentration of EPA and DPA in liver, heart and skeletal muscle and the DHA concentration in liver. DHA supplementation elevated the DHA levels in all tissues and EPA levels in the liver. Adipose was the main tissue site for accumulation of DPA, EPA and DHA. These data suggest that dietary DPA can be converted to DHA in the liver, in a short-term study, and that in addition it is partly retroconverted to EPA in liver, adipose, heart and skeletal muscle. Future studies should examine the physiological effect of DPA in tissues such as liver and heart.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonmammalian vertebrates possess some unusual features in their hormonal systems/ when compared to mammals. As a consequence, they can make an important contribution in investigations concerning the fundamental mechanisms operating in endocrinology. Such studies concerning androgens include inter alia their effects on developmental aspects in the brain of birds and related singing behaviour; the role of neural enzymes in reproductive processes in fish; and the relation between androgens and the stages of spermatogenesis in amphibia, The present thesis examines the biochemistry of androgens in the Australian lizard Tiliqua rugosa. The major compounds studied were testosterone and epitestosterone, which are known to be present in high concentrations in the plasma of the male animal. Previous investigations are expanded, particularly in the areas of steroid identification and testicular biosynthesis. In addition, preliminary studies on the metabolism in the brain (and other tissues) and plasma protein binding are reported. The presence of epitestosterone as a major free androgen in the plasma of the male lizard was confirmed. Other steroids were found in the sulphate fraction. Testosterone sulphate was the most rigorously identified compound, while some evidence was also found for the presence of conjugated 5-androstene-3β,17-diols, etiocholanolone and dehydroepiandrosterone (DHA). Epitestosterone does not appear to be extensively conjugated in this animal. Steroids were not found to be conjugated as glucuronides. The identification studies employed a novel method of electrochemical detection of steroids. This technique was investigated and extended in the current thesis. Biosynthetic studies were carried out on androgen interconversions in the testis, in vitro. The major enzyme activities detected were 17α-arid 17β-oxidoreductases (17α-OR and l7β-OR) and 3β-hydroxysteroid dehydrogenase (3β-HSD)/isonerase. No evidence was found for the presence of a steroid-17-epimerase that would directly interconvert testosterone and epitestosterone. The 17-oxidoreductases were found to be dependent on the cofactor NBDFH. Testosterone appears to be formed mainly via the 4-ene pathway, whereas epitestosterone is formed from both the 4- and 5-ene routes. The compound 5-androstene-3β, 17α-diol was found to be an intermediate in the synthesis of epitestosterone from DHA. Temperature was found to significantly affect 17α-OR activity (maximum at 32°C). In contrast,17β-OR activity was independent of this factor in the testis. Androgen metabolism in the testis was found to be regulated by cofactors, temperature and season. The major enzyme activities found in the male brain were 17α- and 17β-OR. 3βHSD/isomerase was not found; however a low activity of 5α-reductase was identified. Aromatase activity was not positively identified, but preliminary results suggest that it may be present at low levels. The 17-oxidoreductases were widespread throughout the brain. The 17α-OR was significantly lower in the forebrain than other brain sections. The 170-OR activity did not vary significantly throughout the organ, although there was a trend for its activity to be higher in the midbrain region (containing the hypothalamus in these sections). The concentration of endogenous steroids in brain tissue was estimated by radioimmunoassay. Epitestosterone was found throughout the organ structure, whereas testosterone was found mainly in the midbrain (containing hypothalamic regions in these sections). Correlations between enzyme activities and steroid concentrations in brain regions suggested that the main function of 17α-OR is to produce epitestosterone, whereas the 17β-OR may catalyse a more reversible reaction in vivo. Temperature was found to significantly affect both 17α- and 17β-OR activities in the brain. In contrast to the testis, the maximum activity of the brain enzymes occurred at 37°C. The level of 17α-OR activity in the male lizard (100 nmol/g tissue/h) is the highest reported for this enzyme in vertebrates. Both activities were found to be quantitatively similar in the whole brain homogenates of male and female animals, and did not vary seasonally when examined in the male. The 17-oxidoreductases were also found in most other tissues in T.rugosa, including epididymis, adrenal, kidney and liver (but not blood). This suggests that the high activities of both 17α-OR and 17β-OR are dominant features of the steroid system in this animal. The formation of 11-oxygenated compounds was found in the adrenal, in addition to the formation of polar metabolites in the kidney and liver (possibly polyhydroxylated and conjugated steroids). A preliminary investigation into the plasma binding of androgens was carried out. The insults suggest that there are several binding sites for testosterone; one with high affinity and low capacity; the other with low affinity and high capacity. Binding experiments were carried out at 32°C. At this temperature, specific binding was greater than at 25 or 37°C. From the results of competition studies it was suggested that epitestosterone (with a K(i)= 3 X 10 (-6)M for testosterone binding) regulates the binding of testosterone (K(i)=10(-7)M) and hence the concentrations of the latter steroid as a free compound in plasma. In general, the study has shown that the biochemistry of androgens in the reptile T.rugosa is largely similar to that found in other vertebrates. The major difference is a greatly increased activity of 17α-OR, which causes a higher concentration of 17α-compounds to be present in the tissues of this lizard. The physiological roles for epitestosterone are not yet clear. However it appears from this study that this steroid regulates testosterone concentrations in several tissues by either steroidogenic or binding mechanisms. Several major influences on this regulation include temperature, availability of cofactors and seasonal effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The focus of this thesis was leptin and its role in the development of obesity and non-insulin-dependent diabetes mellitus (NIDDM). Studies in Psammomys obesus, a polygenic animal model of obesity and NIDDM, showed that ob gene expression and plasma leptin concentration correlated significantly with body weight, percentage body fat and plasma insulin concentration. In addition, plasma leptin concentrations were significantly elevated in insulin resistant Psammomys obesus independent of body weight. Dietary energy restriction from weaning in Psammomys obesus prevented excessive body weight gain, hyperleptinemia and hyperglycemia compared with ad libitum fed animals. Interestingly, 19% of the energy-restricted animals still developed hyperinsulinemia and tended to have increased plasma leplin compared with normoinsulinemic energy-restricted Psammomys obesus. Fasting for 24 hours significantly reduced plasma leptin concentration in lean, insulin-sensitive but not obese, insulin-resistant P. obesus, suggesting a dysregulation in the response of leptin to acute caloric deprivation in these animals. The effects of leptin administration to P. obesus were also investigated. Single daily intraperitoneal injection of 5 mg leptin/kg body weight for 14 days had no significant effect in lean or obese P. obesus. This dose had previously been shown to rapidly and significantly reduce food intake and body weight in ob/ob and wild-type mice, suggesting relative leptin resistance in P. obesus. Acute (8 hour) effects of administration of 5 mg leptin/kg body weight were also investigated. No significant effects on food intake or plasma insulin were detected, however blood glucose concentrations were significantly elevated in obese, glucose intolerant P. obexus, suggesting an exacerbation of insulin resistance in susceptible animals. Treatment of lean, healthy P. obesus with 45 mg leptin/kg body weight/day for 7 days resulted in significant decreases in food intake and percentage body fat, showing that the leptin resistance observed in this species could be overcome by the administration of very large doses of leptin. In another study, leplin was shown to significantly inhibit maximal insulin binding to isolated adipocytes, suggesting that leptin may respresent an important link between obesity and NIDDM. Links between aspects of obesity and NIDDM and polymorphisms in the ob and p3-adrencrgic receptor genes were also investigated in two human populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

8-Cyclopentyl-3-(3-(4-fluorosulfonylbenzoyl)oxy)propyl-propylxanthine (44, FSCPX) has been reported to exhibit potent and selective irreversible antagonism of the A1 adenosine receptor when using in vitro biological preparations. However, FSCPX (44) suffers from cleavage of the ester linkage separating the reactive 4-(fluorosulfonyl)phenyl moiety from the xanthine pharmacophore when used in in vivo biological preparations or preparations containing significant enzyme activity, presumably by esterases. Cleavage of the ester linkage renders FSCPX (44) inactive in terms of irreversible receptor binding. In order to obtain an irreversible A1 adenosine receptor antagonist with improved stability, and to further elucidate the effects of linker structure on pharmacological characteristics, several FSCPX (44) analogues incorporating the chemoreactive 4-(fluorosulfonyl)phenyl moiety were targeted, where the labile ester linkage has been replaced by more stable functionalites. In particular, ether, alkyl, amide and ketone linkers were targeted, where the length of the alkyl chain was varied from between one to five atoms. Synthesis of the target compounds was achieved via direct attachment of the N-3 substituent to the xanthine. These compounds were then tested for their biological activity at the A1 adenosine receptor via their ability to irreversibly antagonise the binding of [3H]-8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX, ( 9) to the A1 adenosine receptor of DDT1 MF-2 cells. For comparison, the xanthines were also tested for their ability to inhibit the binding of [3H]-4-(2-[7-amino-2-{furyl} {1,2,4}- triazolo{2,3-a} {1,3,5}triazin-5-ylamino-ethyl)]phenol ([3H]ZM241385, 36) to the A2A adenosine receptor of PC-12 cells. The results suggest that the length and chemical composition of the linker separating the reactive 4-(fluorosulfonyl)phenyl moiety from the xanthine ring contribute to the potency and efficacy of the irreversible A1 adenosine receptor ligands. Like FSCPX (44, IC50 A1 = 11.8 nM), all derivatives possessed IC50 values in the low nM range under in vitro conditions. Compounds 94 (IC50 A1 = 165 nM), 95 (IC50 A1 = 112 nM) and 96 (IC50 A1 = 101 nM) possessing one, three and five methylene spacers within the linkage respectively, exhibited potent and selective binding to the A1 adenosine receptor versus the A2A adenosine receptor. Compound 94 did not exhibit any irreversible binding at A1 adenosine receptors, while 95 and 96 exhibit only weak irreversible binding at A1 adenosine receptors. Those compounds containing a benzylic carbonyl separating the 4-(fluorosulfonyl)phenyl moiety from the xanthine ring in the form of an amide (119, IC50 A1 = 24.9 nM, and 120, IC50 A1 = 21 nM) or ketone (151, IC50 A1 = 14 nM) proved to be the most potent, with compound 120 exhibiting the highest selectivity of 132-fold for the A receptor over the A2A receptor. compounds 119, 120 and 151 also strongly inhibited the binding of [3H]DPCPX irreversibly (82%, 83% and 78% loss of [3H]DPCPX binding at 100 nM respectively). compounds 120 and 151 are currently being evaluated for use in in vivo studies. Structure-activity studies suggest that altering the 8-cycloalkyl group of A1 selective xanthines for a 3-substituted or 2,3-disubstituted styryl, combined with N-7 methyl substitution will produce a compound with high affinity and selectivity for the A2A adenosine receptor over the A1 adenosine receptor. Compound 167 (IC50 A2A = 264 nM) possessing 8-(m-chloro)styryl substitution and the reactive 4-(fluorosulfonyl)phenyl moiety separated from the xanthine ring via an amide linker in the 3-position (as for 119 and 120), exhibited relatively potent binding to the A2A adenosine receptor of PC-12 cells, with a 16-fold selectivity for that receptor over the A1 adenosine receptor. However, compound 167 exhibited only very weak irreversible binding at A2A adenosine receptors. Overall, at this stage of biological testing, compound 120 appears to possess the most advantageous characteristics as an irreversible antagonist for the A1 adenosine receptor. This can be attributed to its high selectivity for the A1 adenosine receptor as compared to the A2A adenosine receptor. It also has relatively high potency for the A1 adenosine receptor, a concentration-dependent and selective inactivation of A1 adenosine receptors, and unbound ligand is easily removed (washed out) from biological membranes. These characteristics mean compound 151 has the potential to be a useful tool for the further study of the structure and function of the A1 adenosine receptor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wilson and Menkes diseases are genetic disorders of copper, caused by mutations in two proteins that act as copper pumps in the body. This study contributed to the understanding of how these proteins maintain adequate and safe copper levels in humans and may lead to new treatments for copper diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The results of this thesis indicate that vegetarianism and prior exercise can increase skeletal muscle creatine loading. The mechanisms by which these phenomena occur remain unknown but may be related to changes in the gene expression of a cellular pump within the muscle known as the "creatine transporter".