928 resultados para Full range gasoline composition
Resumo:
Introduction: Several methods have already been proposed to improve the mobility of reversed prostheses (lateral or inferior displacement, increase of the glenosphere size). However, the effect of these design changes have only been evaluated on the maximal range of motion and were not related to activities of daily living (ADL). Our aim was thus to measure the effect of these design changes and to relate it to 4 typical ADL. Methods: CT data were used to reconstruct a accurate geometric model of the scapula and humerus. The Aequalis reversed prosthesis (Tornier) was used. The mobility of a healthy shoulder was compared to the mobility of 4 different reversed designs: 36 and 42 mm glenospheres diameters, inferior (4 mm) and lateral (3.2 mm) glenospheres displacements. The complete mobility map of the prosthesis was compared to kinematics measurement on healthy subjects for 4 ADL: 1) hand to contra lateral shoulder, 2) hand to mouth, 3) combing hair, 4) hand to back pocket. The results are presented as percentage of the allowed movement of the prosthestic shouder relative to the healthy shoulder, considered as the control group. Results: None of the tested designs allowed to recover a full mobility. The differences of allowed range of motion among each prosthetic designs appeared mainly in two of the 4 movements: hand to back pocket and hand to contra lateral shoulder. For the hand to back pocket, the 36 had the lowest mobility range, particularly for the last third of the movement. The 42 appeared to be a good compromise for all ADL activities. Conclusion: Reverse shoulder prostheses does not allow to recover a full range of motion compared to healthy shoulders, even for ADL. The present study allowed to obtain a complete 3D mobility map for several glenosphere positions and sizes, and to relate it to typical ADL. We mainly observed an improved mobility with inferior displacement and increased glenosphere size. We would suggest to use larger glenosphere, whenever it is possible.
Resumo:
Phase I was initiated as a result of internal Iowa Department of Transportation (Iowa DOT) studies that raised concerns about the quality of embankments being constructed. Some large embankments have recently developed slope stability problems. In addition, pavement roughness has been noted shortly after roads were opened to traffic. This raised the question as to whether the current Iowa DOT embankment construction specifications are adequate. The primary objective of Phase I was to evaluate the quality of embankments being constructed under the current Iowa DOT specifications. The project was initiated in May 1997 with a tour of several embankment projects being constructed around the state. At each of these projects the resident construction engineer, field inspector, and contractor were interviewed with respect to their opinion of the current specifications. From construction observations and discussion during these visits it became obvious that there were problems with the current embankment construction specifications. Six embankment projects were selected for in-depth analysis and to represent the full range of soil types being used across the state. The results of Phase I field and laboratory construction testing and observations and post construction testing are presented in this report. Overall evaluation of the results of Phase I indicate that Iowa is not consistently obtaining a quality embankment constructed under the current Iowa DOT specifications. Based on these results, recommendations are made for Phase II to evaluate alternative specifications and develop rapid field methods for compaction control and soil identification.
Resumo:
Phase II research included the following: (1) develop and evaluate alternative soil design and embankment construction specifications based on soil type, moisture, density, stability, and compaction process; (2) assess various quality control and acceptance procedures with a variety of in-situ test methods including the Dual-mass Dynamic Cone Penetrometer (DCP); and (3) develop and design rapid field soil identification methods. At the start of the research, soils were divided into cohesive and cohesionless soil types, with each category being addressed separately. Cohesionless soils were designated as having less than 36% fines content (material passing the No. 200 sieve) and cohesive soils as having greater than 36% fines content. Subsequently, soil categories were refined based not only on fines content but soil plasticity as well. Research activities included observations of fill placement, in-place moisture and density testing, and dual-mass DCP index testing on several highway embankment projects throughout Iowa. Experiments involving rubber-tired and vibratory compaction, lift thickness changes, and disk aeration were carried out for the full range of Iowa soils. By testing for soil stability the DCP was found to be a valuable field tool for quality control, whereby shortcomings from density testing (density gradients) were avoided. Furthermore, critical DCP index values were established based on soil type and compaction moisture content.
Resumo:
BACKGROUND: The provision of highly active antiretroviral therapy (HAART) in resource-limited settings follows a public health approach, which is characterised by a limited number of regimens and the standardisation of clinical and laboratory monitoring. In industrialized countries doctors prescribe from the full range of available antiretroviral drugs, supported by resistance testing and frequent laboratory monitoring. We compared virologic response, changes to first-line regimens, and mortality in HIV-infected patients starting HAART in South Africa and Switzerland. METHODS AND FINDINGS: We analysed data from the Swiss HIV Cohort Study and two HAART programmes in townships of Cape Town, South Africa. We included treatment-naïve patients aged 16 y or older who had started treatment with at least three drugs since 2001, and excluded intravenous drug users. Data from a total of 2,348 patients from South Africa and 1,016 patients from the Swiss HIV Cohort Study were analysed. Median baseline CD4+ T cell counts were 80 cells/mul in South Africa and 204 cells/mul in Switzerland. In South Africa, patients started with one of four first-line regimens, which was subsequently changed in 514 patients (22%). In Switzerland, 36 first-line regimens were used initially, and these were changed in 539 patients (53%). In most patients HIV-1 RNA was suppressed to 500 copies/ml or less within one year: 96% (95% confidence interval [CI] 95%-97%) in South Africa and 96% (94%-97%) in Switzerland, and 26% (22%-29%) and 27% (24%-31%), respectively, developed viral rebound within two years. Mortality was higher in South Africa than in Switzerland during the first months of HAART: adjusted hazard ratios were 5.90 (95% CI 1.81-19.2) during months 1-3 and 1.77 (0.90-3.50) during months 4-24. CONCLUSIONS: Compared to the highly individualised approach in Switzerland, programmatic HAART in South Africa resulted in similar virologic outcomes, with relatively few changes to initial regimens. Further innovation and resources are required in South Africa to both achieve more timely access to HAART and improve the prognosis of patients who start HAART with advanced disease.
Resumo:
This report is one of two products for this project with the other being a design guide. This report describes test results and comparative analysis from 16 different portland cement concrete (PCC) pavement sites on local city and county roads in Iowa. At each site the surface conditions of the pavement (i.e., crack survey) and foundation layer strength, stiffness, and hydraulic conductivity properties were documented. The field test results were used to calculate in situ parameters used in pavement design per SUDAS and AASHTO (1993) design methodologies. Overall, the results of this study demonstrate how in situ and lab testing can be used to assess the support conditions and design values for pavement foundation layers and how the measurements compare to the assumed design values. The measurements show that in Iowa, a wide range of pavement conditions and foundation layer support values exist. The calculated design input values for the test sites (modulus of subgrade reaction, coefficient of drainage, and loss of support) were found to be different than typically assumed. This finding was true for the full range of materials tested. The findings of this study support the recommendation to incorporate field testing as part of the process to field verify pavement design values and to consider the foundation as a design element in the pavement system. Recommendations are provided in the form of a simple matrix for alternative foundation treatment options if the existing foundation materials do not meet the design intent. The PCI prediction model developed from multi-variate analysis in this study demonstrated a link between pavement foundation conditions and PCI. The model analysis shows that by measuring properties of the pavement foundation, the engineer will be able to predict long term performance with higher reliability than by considering age alone. This prediction can be used as motivation to then control the engineering properties of the pavement foundation for new or re-constructed PCC pavements to achieve some desired level of performance (i.e., PCI) with time.
Resumo:
The use of chemicals is a critical part of a pro-active winter maintenance program. However, ensuring that the correct chemicals are used is a challenge. On the one hand, budgets are limited, and thus price of chemicals is a major concern. On the other, performance of chemicals, especially at lower pavement temperatures, is not always assured. Two chemicals that are used extensively by the Iowa Department of Transportation (Iowa DOT) are sodium chloride (or salt) and calcium chloride. While calcium chloride can be effective at much lower temperatures than salt, it is also considerably more expensive. Costs for a gallon of salt brine are typically in the range of $0.05 to $0.10, whereas calcium chloride brine may cost in the range of $1.00 or more per gallon. These costs are of course subject to market forces and will thus change from year to year. The idea of mixing different winter maintenance chemicals is by no means new, and in general discussions it appears that many winter maintenance personnel have from time to time mixed up a jar of chemicals and done some work around the yard to see whether or not their new mix “works.” There are many stories about the mixture turning to “mayonnaise” (or, more colorfully, to “snot”) suggesting that mixing chemicals may give rise to some problems most likely due to precipitation. Further, the question of what constitutes a mixture “working” in this context is a topic of considerable discussion. In this study, mixtures of salt brine and calcium chloride brine were examined to determine their ice melting capability and their freezing point. Using the results from these tests, a linear interpolation model of the ice melting capability of mixtures of the two brines has been developed. Using a criterion based upon the ability of the mixture to melt a certain thickness of ice or snow (expressed as a thickness of melt-water equivalent), the model was extended to develop a material cost per lane mile for the full range of possible mixtures as a function of temperature. This allowed for a comparison of the performance of the various mixtures. From the point of view of melting capacity, mixing calcium chloride brine with salt brine appears to be effective only at very low temperatures (around 0° F and below). However, the approach described herein only considers the material costs, and does not consider application costs or other aspects of the mixture performance than melting capacity. While a unit quantity of calcium chloride is considerably more expensive than a unit quantity of sodium chloride, it also melts considerably more ice. In other words, to achieve the same result, much less calcium chloride brine is required than sodium chloride brine. This is important in considering application costs, because it means that a single application vehicle (for example, a brine dispensing trailer towed behind a snowplow) can cover many more lane miles with calcium chloride brine than with salt brine before needing to refill. Calculating exactly how much could be saved in application costs requires an optimization of routes used in the application of liquids in anti-icing, which is beyond the scope of the current study. However, this may be an area that agencies wish to pursue for future investigation. In discussion with winter maintenance personnel who use mixtures of sodium chloride and calcium chloride, it is evident that one reason for this is because the mixture is much more persistent (i.e. it stays longer on the road surface) than straight salt brine. Operationally this persistence is very valuable, but at present there are not any established methods to measure the persistence of a chemical on a pavement. In conclusion, the study presents a method that allows an agency to determine the material costs of using various mixtures of salt brine and calcium chloride brine. The method is based upon the requirement of melting a certain quantity of snow or ice at the ice-pavement interface, and on how much of a chemical or of a mixture of chemicals is required to do that.
Resumo:
The CO2-laser-MAG hybrid welding process has been shown to be a productive choice for the welding industry, being used in e.g. the shipbuilding, pipe and beam manufacturing, and automotive industries. It provides an opportunity to increase the productivity of welding of joints containing air gaps compared with autogenous laser beam welding, with associated reductions in distortion and marked increases in welding speeds and penetration in comparison with both arc and autogenous laser welding. The literature study indicated that the phenomena of laser hybrid welding are mostly being studied using bead-on-plate welding or zero air gap configurations. This study shows it very clearly that the CO2 laser-MAG hybrid welding process is completely different, when there is a groove with an air gap. As in case of industrial use it is excepted that welding is performed for non-zero grooves, this study is of great importance for industrial applications. The results of this study indicate that by using a 6 kW CO2 laser-MAG hybrid welding process, the welding speed may also be increased if an air gap is present in the joint. Experimental trials indicated that the welding speed may be increased by 30-82% when compared with bead-on-plate welding, or welding of a joint with no air gap i.e. a joint prepared as optimum for autogenous laser welding. This study demonstrates very clearly, that the separation of the different processes, as well as the relative configurations of the processes (arc leading or trailing) affect welding performance significantly. These matters influence the droplet size and therefore the metal transfer mode, which in turn determined the resulting weld quality and the ability to bridge air gaps. Welding in bead-onplate mode, or of an I butt joint containing no air gap joint is facilitated by using a leading torch. This is due to the preheating effect of the arc, which increases the absorptivity of the work piece to the laser beam, enabling greater penetration and the use of higher welding speeds. With an air gap present, air gap bridging is more effectively achieved by using a trailing torch because of the lower arc power needed, the wider arc, and the movement of droplets predominantly towards the joint edges. The experiments showed, that the mode of metal transfer has a marked effect on gap bridgeability. Transfer of a single droplet per arc pulse may not be desirable if an air gap is present, because most of the droplets are directed towards the middle of the joint where no base material is present. In such cases, undercut is observed. Pulsed globular and rotational metal transfer modes enable molten metal to also be transferred to the joint edges, and are therefore superior metal transfer modes when bridging air gaps. It was also found very obvious, that process separation is an important factor in gap bridgeability. If process separation is too large, the resulting weld often exhibits sagging, or no weld may be formed at all as a result of the reduced interaction between the component processes. In contrast, if the processes are too close to one another, the processing region contains excess molten metal that may create difficulties for the keyhole to remain open. When the distance is optimised - i.e. a separation of 0-4 mm in this study, depending on the welding speed and beam-arc configuration - the processes act together, creating beneficial synergistic effects. The optimum process separation when using a trailing torch was found to be shorter (0-2 mm) than when a leading torch is used (2-4 mm); a result of the facilitation of weld pool motion when the latter configuration is adopted. This study demonstrates, that the MAG process used has a strong effect on the CO2-laser-MAG hybrid welding process. The laser beam welding component is relatively stable and easy to manage, with only two principal processing parameters (power and welding speed) needing to be adjusted. In contrast, the MAG process has a large number of processing parameters to optimise, all of which play an important role in the interaction between the laser beam and the arc. The parameters used for traditional MAG welding are often not optimal in achieving the most appropriate mode of metal transfer, and weld quality in laser hybrid welding, and must be optimised if the full range of benefits provided by hybrid welding are to be realised.
Resumo:
Dreaming is a pure form of phenomenality, created by the brain untouched by external stimulation or behavioral activity, yet including a full range of phenomenal contents. Thus, it has been suggested that the dreaming brain could be used as a model system in a biological research program on consciousness (Revonsuo, 2006). In the present thesis, the philosophical view of biological realism is accepted, and thus, dreaming is considered as a natural biological phenomenon, explainable in naturalistic terms. The major theoretical contribution of the present thesis is that it explores dreaming from a multidisciplinary perspective, integrating information from various fields of science, such as dream research, consciousness research, evolutionary psychology, and cognitive neuroscience. Further, it places dreaming into a multilevel framework, and investigates the constitutive, etiological, and contextual explanations for dreaming. Currently, the only theory offering a full multilevel explanation for dreaming, that is, a theory including constitutive, etiological, and contextual level explanations, is the Threat Simulation Theory (TST) (Revonsuo, 2000a; 2000b). The empirical significance of the present thesis lies in the tests conducted to test this specific theory put forth to explain the form, content, and biological function of dreaming. The first step in the empirical testing of the TST was to define exact criteria for what is a ‘threatening event’ in dreams, and then to develop a detailed and reliable content analysis scale with which it is possible to empirically explore and quantify threatening events in dreams. The second step was to seek answers to the following questions derived from the TST: How frequent threatening events are in dreams? What kind of qualities these events have? How threatening events in dreams relate to the most recently encoded or the most salient memory traces of threatening events experienced in waking life? What are the effects of exposure to severe waking life threat on dreams? The results reveal that threatening events are relatively frequent in dreams, and that the simulated threats are realistic. The most common threats include aggression, are targeted mainly against the dream self, and include simulations of relevant and appropriate defensive actions. Further, real threat experiences activate the threat simulation system in a unique manner, and dream content is modulated by the activation of long term episodic memory traces with highest negative saliency. To sum up, most of the predictions of the TST tested in this thesis received considerable support. The TST presents a strong argument that explains the specific design of dreams as threat simulations. The TST also offers a plausible explanation for why dreaming would have been selected for: because dreaming interacted with the environment in such a way that enhanced fitness of ancestral humans. By referring to a single threat simulation mechanism it furthermore manages to explain a wide variety of dream content data that already exists in the literature, and to predict the overall statistical patterns of threat content in different samples of dreams. The TST and the empirical tests conducted to test the theory are a prime example of what a multidisciplinary approach to mental phenomena can accomplish. Thus far, dreaming seems to have always resided in the periphery of science, never regarded worth to be studied by the mainstream. Nevertheless, when brought to the spotlight, the study of dreaming can greatly benefit from ideas in diverse branches of science. Vice versa, knowledge learned from the study of dreaming can be applied in various disciplines. The main contribution of the present thesis lies in putting dreaming back where it belongs, that is, into the spotlight in the cross-road of various disciplines.
Resumo:
The development of an array of chemically-responsive dyes on a porous membrane and in its use as a general sensor for odors and volatile organic compounds (VOCs) is reviewed. These colorimetric sensor arrays (CSA) act as an "optoelectronic nose" by using an array of multiple dyes whose color changes are based on the full range of intermolecular interactions. The CSA is digitally imaged before and after exposure and the resulting difference map provides a digital fingerprint for any VOC or mixture of odorants. The result is an enormous increase in discriminatory power among odorants compared to prior electronic nose technologies. For the detection of biologically important analytes, including amines, carboxylic acids, and thiols, high sensitivities (ppbv) have been demonstrated. The array is essentially non-responsive to changes in humidity due to the hydrophobicity of the dyes and membrane.
Resumo:
Systems biology is a new, emerging and rapidly developing, multidisciplinary research field that aims to study biochemical and biological systems from a holistic perspective, with the goal of providing a comprehensive, system- level understanding of cellular behaviour. In this way, it addresses one of the greatest challenges faced by contemporary biology, which is to compre- hend the function of complex biological systems. Systems biology combines various methods that originate from scientific disciplines such as molecu- lar biology, chemistry, engineering sciences, mathematics, computer science and systems theory. Systems biology, unlike “traditional” biology, focuses on high-level concepts such as: network, component, robustness, efficiency, control, regulation, hierarchical design, synchronization, concurrency, and many others. The very terminology of systems biology is “foreign” to “tra- ditional” biology, marks its drastic shift in the research paradigm and it indicates close linkage of systems biology to computer science. One of the basic tools utilized in systems biology is the mathematical modelling of life processes tightly linked to experimental practice. The stud- ies contained in this thesis revolve around a number of challenges commonly encountered in the computational modelling in systems biology. The re- search comprises of the development and application of a broad range of methods originating in the fields of computer science and mathematics for construction and analysis of computational models in systems biology. In particular, the performed research is setup in the context of two biolog- ical phenomena chosen as modelling case studies: 1) the eukaryotic heat shock response and 2) the in vitro self-assembly of intermediate filaments, one of the main constituents of the cytoskeleton. The range of presented approaches spans from heuristic, through numerical and statistical to ana- lytical methods applied in the effort to formally describe and analyse the two biological processes. We notice however, that although applied to cer- tain case studies, the presented methods are not limited to them and can be utilized in the analysis of other biological mechanisms as well as com- plex systems in general. The full range of developed and applied modelling techniques as well as model analysis methodologies constitutes a rich mod- elling framework. Moreover, the presentation of the developed methods, their application to the two case studies and the discussions concerning their potentials and limitations point to the difficulties and challenges one encounters in computational modelling of biological systems. The problems of model identifiability, model comparison, model refinement, model inte- gration and extension, choice of the proper modelling framework and level of abstraction, or the choice of the proper scope of the model run through this thesis.
Resumo:
Article
Resumo:
In this article, we present the spectral and nonlinear optical properties of ZnO–CdS nanocomposites prepared by colloidal chemical synthesis. The optical band gap (Eg) of the material is tunable between 2.62 and 3.84 eV. The emission peaks of ZnO–CdS nanocomposites change from 385 to 520 nm almost in proportion to changes in Eg. It is possible to obtain a desired luminescence color from UV to green by simply adjusting the composition. The nonlinear optical response of these samples is studied by using nanosecond laser pulses from a tunable laser at the excitonic resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent, and switching from saturable absorption (SA) to reverse SA (RSA) has been observed for samples as the excitation wavelength changes from the excitonic resonance to off-resonance wavelengths. Such a changeover in the sign of the nonlinearity of ZnO–CdS nanocomposites is related to the interplay of exciton bleach and optical limiting mechanisms. The ZnO–CdS nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior at off-resonant wavelengths. The nonlinear refractive index and the nonlinear absorption increase with increasing CdS volume fraction at 532 nm. The observed nonlinear absorption is attributed to two photon absorption followed by weak free carrier absorption. The enhancement of the third-order nonlinearity in the composites can be attributed to the concentration of exciton oscillator strength. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA based optical limiter. ZnO–CdS is a potential nanocomposite material for the tunable light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
In this article, we present the spectral and nonlinear optical properties of ZnOCu nanocomposites prepared by colloidal chemical synthesis. The emission consisted of two peaks. The 385-nm ultraviolet (UV) peak is attributed to ZnO and the 550-nm visible peak is attributed to Cu nanocolloids. Obvious enhancement of UV and visible emission of the samples is observed and the strongest UV emission of a typical ZnOCu nanocomposite is over three times stronger than that of pure ZnO. Cu acts as a sensitizer and the enhancement of UV emission are caused by excitons formed at the interface between Cu and ZnO. As the volume fraction of Cu increases beyond a particular value, the intensity of the UV peak decreases while the intensity of the visible peak increases, and the strongest visible emission of a typical ZnOCu nanocomposite is over ten times stronger than that of pure Cu. The emission mechanism is discussed. Nonlinear optical response of these samples is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450650 nm, which includes the surface plasmon absorption (SPA) band. The nonlinear response is wavelength dependent and switching from reverse saturable absorption (RSA) to saturable absorption (SA) has been observed for Cu nanocolloids as the excitation wavelength changes from the low absorption window region to higher absorption regime near the SPA band. However, ZnO colloids and ZnOCu nanocomposites exhibit induced absorption at this wavelength. Such a changeover in the sign of the nonlinearity of ZnOCu nanocomposites, with respect to Cu nanocolloids, is related to the interplay of plasmon band bleach and optical limiting mechanisms. The SA again changes back to RSA when we move over to the infrared region. The ZnOCu nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The nonlinear refractive index and the nonlinear absorption increases with increasing Cu volume fraction at 532 nm. The observed nonlinear absorption is explained through two-photon absorption followed by weak free-carrier absorption and interband absorption mechanisms. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA-based optical limiter. ZnOCu is a potential nanocomposite material for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
The oceans have proved to be an interminable source of new and effective drugs. Innumerable studies have proved that specific compounds isolated from marine organisms have great nutritional and pharmaceutical value. Polyunsaturated fattyacids (PUFA) in general are known for their dietary benefits in preventing and curing several critical ailments including Coronary heart disease (CHD) and cancers of various kinds. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) are two PUFA which are entirely marine in origin – and small Clupeoid fishes like sardines are known to be excellent sources of these two compounds. In this study, we selected two widely available Sardine species in the west coast, Sardinella longiceps and Sardinella fimbriata, for a comparative analysis of their bioactive properties. Both these sardines are known to be rich in EPA and DHA, however considerable seasonal variation in its PUFA content was expected and these variations studied. An extraction procedure to isolate PUFA at high purity levels was identified and the extracts obtained thus were studied for anti-bacterial, anti-diabetic and anti-cancerous properties.Samples of both the sardines were collected from landing centre, measured and their gut content analysed in four different months of the year – viz. June, September, December and March. The fish samples were analyzed for fattyacid using FAME method using gas chromatography to identify the full range of fattyacids and their respective concentration in each of the samples. The fattyacids were expressed in mg/g meat and later converted to percentage values against total fatty acids and total PUFA content. Fattyacids during winter season (Dec-Mar) were found to be generally higher than spawning season (June-Sept). PUFA dominated the profiles of both species and average PUFA content was also higher during winter. However, it was found that S. longiceps had proportionately higher EPA as compared to S. fimbriata which was DHA rich. Percentage of EPA and DHA also varied across months for both species – the spawning season seemed to show higher EPA content in S. longiceps and higher DHA content in S. fimbriata. Gut content analysis indicate that adult S. fimbriata is partial to zooplanktons which are DHA rich while adult S. longiceps feed mainly on EPA rich phytoplankton. Juveniles of both species, found mainly in winter, had a gut content showing more mixed diet. This difference in the feeding pattern reflect clearly in their PUFA profile – adult S. longiceps, which dominate the catch during the spawn season, feeding mostly on phytoplankton is concentrated with EPA while the juveniles which are found mostly in the winter season has slightly less EPA proportion as compared to adults. The same is true for S. fimbriata adults that are caught mostly in the spawning season; being rich in DHA as they feed mainly on zooplankton while the juveniles caught during winter season has a relatively lower concentration of DHA in their total PUFA.Various extraction procedures are known to obtain PUFA from fish oil. However, most of them do not give high purity and do not use materials indicated as safe. PUFA extracts have to be edible and should not have harmful substances for applying on mice and human subjects. Some PUFA extraction procedures, though pure and non-toxic, might induce cis-trans conversions during the extraction process. This conversion destroys the benefits of PUFA and at times is harmful to human body. A method free from these limitations has been standardized for this study. Gas Chromatography was performed on the extracts thus made to ensure that it is substantially pure. EPA: DHA ratios for both samples were derived - for S. longiceps this ratio was 3:2, while it was 3:8 for S. fimbriata.Eight common strains of gram positive and gram negative bacterial strains were subjected to the PUFA extracts from both species dissolved in acetone solution using Agar Well Diffusion method. The activity was studied against an acetone control. At the end of incubation period, zones of inhibition were measured to estimate the activity. Minimum inhibitory concentration for each of the active combinations was calculated by keeping p < 0.01 as significant. Four of the bacteria including multi-resistant Staphylococcus aureus were shown to be inhibited by the fish extracts. It was also found that the extracts from S. fimbriata were better than the one from S. longiceps in annihilating harmful bacteria.Four groups of mice subjects were studied to evaluate the antidiabetic properties of the PUFA extracts. Three groups were induced diabetes by administration of alloxan tetra hydrate. One group without diabetes was kept as control and another with diabetes was kept as diabetic control. For two diabetic groups, a prescribed amount of fish extracts were fed from each of the extracts. The biochemical parameters like serum glucose, total cholesterol, LDL & HDL cholesterol, triglycerides, urea and creatinine were sampled from all four groups at regular intervals of 7 days for a period of 28 days. It was found that groups fed with fish extracts had marked improvement in the levels of total LDL & HDL cholesterol, triglycerides and creatinine. Groups fed with extracts from S. fimbriata seem to have fared better as compared to S. longiceps. However, both groups did not show any marked improvement in blood glucose levels or levels of urea.Cell lines of MCF-7 (Breast Cancer) and DU-145 (Prostate Cancer) were used to analyse the cytotoxicity of the PUFA extracts. Both cell lines were subjected to MTT Assay and later the plates were read using an ELISA reader at a wavelength of 570nm. It was found that both extracts had significant cytotoxic effects against both cell lines and a peak cytotoxicity of 85-90% was apparent. IC50 values were calculated from the graphs and it was found that S. longiceps extracts had a slightly lower IC50 value indicating that it is toxic even at a lower concentration as compared to extracts from S. fimbriata.This study summarizes the bioactivity profile of PUFA extracts and provides recommendation for dietary intake; fish based nutritional industry and indigenous pharmaceutical industry. Possible future directions of this study are also elaborated.
Resumo:
The Brueckner-Hartree-Fock formalism is applied to study spin polarized neutron matter properties. Results of the total energy per particle as a function of the spin polarization and density are presented for two modern realistic nucleon-nucleon interactions, Nijmegen II and Reid93. We find that the dependence of the energy on the spin polarization is practically parabolic in the full range of polarizations. The magnetic susceptibility of the system is computed. Our results show no indication of a ferromagnetic transition which becomes even more difficult as the density increases.