992 resultados para Frequency stability
Resumo:
A nonlinear stability theorem is established for Eady's model of baroclinic flow. In particular, the Eady basic state is shown to be nonlinearly stable (for arbitrary shear) provided (Δz)/(Δy) > 2(5)^1/2f/(πN),where Δz is the height of the domain, Δy the channel width, f the Coriolis parameter, and N the buoyancy frequency. When this criterion is satisfied, explicit bounds can be derived on the disturbance potential enstrophy, the disturbance energy, and the disturbance available potential energy on the rigid lids, which are expressed in terms of the initial disturbance fields. The disturbances are completely general (with nonzero potential vorticity) and are not assumed to be of small amplitude. The results may be regarded as an extension of Arnol'd's second nonlinear stability theorem to continuously stratified quasigeostrophic baroclinic flow.
Resumo:
High-frequency extensions of magnetorotational instability driven by the Velikhov effect beyond the standard magnetohydrodynamic (MHD) regime are studied. The existence of the well-known Hall regime and a new electron inertia regime is demonstrated. The electron inertia regime is realized for a lesser plasma magnetization of rotating plasma than that in the Hall regime. It includes the subregime of nonmagnetized electrons. It is shown that, in contrast to the standard MHD regime and the Hall regime, magnetorotational instability in this subregime can be driven only at positive values of dln Omega/dlnr, where Omega is the plasma rotation frequency and r is the radial coordinate. The permittivity of rotating plasma beyond the standard MHD regime, including both the Hall regime and the electron inertia regime, is calculated.
Resumo:
Stability and interface properties of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) films adsorbed from acetone or ethyl acetate onto Si wafers have been investigated by means of contact angle measurements and atomic force microscopy (AFM). Surface energy (gamma(total)(S)) values determined for CAP adsorbed from acetone are larger than those from ethyl acetate. In the case of CAB films adsorbed from ethyl acetate and acetone were similar. Dewetting was observed by AFM only for CAP films prepared from ethyl acetate. Positive values of effective Hamaker constant (A(eff)) were found only for CAP prepared from ethyl acetate, corroborating with dewetting phenomena observed by AFM. Oil the contrary, negative values of A(eff) were determined for CAP and CAB prepared from acetone and for CAB prepared from ethyl acetate, Corroborating with experimental observations. Sum frequency generation (SFG) vibrational spectra indicated that CAP and CAB films prepared from ethyl acetate present more alkyl groups oriented perpendicularly to the polymer-air interface than those films prepared from acetone. Such preferential orientation corroborates with macroscopic contact angle measurements. Moreover, SFG spectra showed that acetone hinds strongly to Si wafers, creating a new surface for CAP and CAB films. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: Different surface treatments have been developed in attempts to prevent the loosening of abutment screws. The aim of the current study was to compare the effectiveness of titanium alloy screws with tungsten-doped diamond-like carbon (W-DLC) coating and uncoated screws in providing stability to zirconia (ZrO2) ceramic abutments after cyclic loading. Materials and Methods: Twenty prefabricated ZrO2 ceramic abutments on their respective external-hex implants were divided into two groups of equal size according to the type of screw used: uncoated titanium alloy screw (Ti) or titanium alloy screw with W-DLC coating (W-DLC/Ti). The removal torque value (preload) of the abutment screw was measured before and after loading. Cyclic loading between 11 and 211 N was applied at an angle of 30 degrees to the long axis of the implants at a frequency of 15 Hz. A target of 0.5 x 10(6) cycles was defined. Group means were calculated and compared using analysis of variance and the F test (alpha=.05). Results: Before cyclic loading, the preload for Ti screws was significantly higher than that for W-DLC/Ti screws (P=.021). After cyclic loading, there was no significant difference between them (P=.499). Conclusions: Under the studied conditions, it can be concluded that, after cyclic loading, both abutment screws presented a significant reduction in the mean retained preload and similar effectiveness in maintaining preload. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:1061-1067
Resumo:
A linearly tunable low-voltage CMOS transconductor featuring a new adaptative-bias mechanism that considerably improves the stability of the processed-signal common,mode voltage over the tuning range, critical for very-low voltage applications, is introduced. It embeds a feedback loop that holds input devices on triode region while boosting the output resistance. Analysis of the integrator frequency response gives an insight into the location of secondary poles and zeros as function of design parameters. A third-order low-pass Cauer filter employing the proposed transconductor was designed and integrated on a 0.8-mum n-well CMOS standard process. For a 1.8-V supply, filter characterization revealed f(p) = 0.93 MHz, f(s) = 1.82 MHz, A(min) = 44.08, dB, and A(max) = 0.64 dB at nominal tuning. Mined by a de voltage V-TUNE, the filter bandwidth was linearly adjusted at a rate of 11.48 kHz/mV over nearly one frequency decade. A maximum 13-mV deviation on the common-mode voltage at the filter output was measured over the interval 25 mV less than or equal to V-TUNE less than or equal to 200 mV. For V-out = 300 mV(pp) and V-TUNE = 100 mV, THD was -55.4 dB. Noise spectral density was 0.84 muV/Hz(1/2) @1 kHz and S/N = 41 dB @ V-out = 300 mV(pp) and 1-MHz bandwidth. Idle power consumption was 1.73 mW @V-TUNE = 100 mV. A tradeoff between dynamic range, bandwidth, power consumption, and chip area has then been achieved.
Resumo:
Most of the established procedures for analysis of aeroelastic flutter in the development of aircraft are based on frequency domain methods. Proposing new methodologies in this field is always a challenge, because the new methods need to be validated by many experimental procedures. With the interest for new flight control systems and nonlinear behavior of aeroelastic structures, other strategies may be necessary to complete the analysis of such systems. If the aeroelastic model can be written in time domain, using state-space formulation, for instance, then many of the tools used in stability analysis of dynamic systems may be used to help providing an insight into the aeroelastic phenomenon. In this respect, this paper presents a discussion on the use of Gramian matrices to determine conditions of aeroelastic flutter. The main goal of this work is to introduce how observability gramian matrix can be used to identify the system instability. To explain the approach, the theory is outlined and simulations are carried out on two benchmark problems. Results are compared with classical methods to validate the approach and a reduction of computational time is obtained for the second example. © 2013 Douglas Domingues Bueno et al.
Resumo:
An efficient cryopreservation protocol was developed for mature seeds of Oncidium flexuosum Sims. Seed morphology, protocorm formation, and early seedling development were also assessed. The effects of phloroglucinol and Supercool X-1000® as cryoprotectant additives in the vitrification solution were investigated. Dehydration using the plant vitrification solution 2 (PVS2) for 60 and 120 min prior to immersion in liquid nitrogen promoted the highest frequency of in vitro seed germination 6 weeks following culture on half-strength Murashige and Skoog (1/2 MS) medium. Mature seeds submitted to vitrification for 120 min in PVS2 and 1 % phloroglucinol at 0 °C enhanced germination by 68 %, whereas in PVS2 and 1 % Supercool X-1000® germination was just moderately enhanced (26 %). In vitro-germinating seedlings developed healthy shoots and roots without the use of plant growth regulators. After 6 months of growth, there were no differences between in vitro- and ex vitro-grown seedlings for various phenotypic characteristics, including shoot length, number of leaves, number and length of roots, and fresh and dry weight. Seedlings were transferred to greenhouse conditions and successfully acclimatized, further developing into normal plants with over 90 % survival. Comparative analysis of seedlings from control and vitrified seeds using flow cytometry indicated that no change in ploidy levels occurred as a result of cryopreservation, therefore maintaining seedlings genetic stability. In this study, vitrification with PVS2 for 120 min with the addition of 1 % phloroglucinol offers a simple, safe, and feasible protocol for cryopreservation of O. flexuosum mature seeds. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
The primary stability of dental implants is fundamental for osseointegration. Therefore, this study aimed to assess the correlation between insertion torque (IT) and resonance frequency analysis (RFA) of implants placed in mandibles and maxillas of different bone densities. Eighty dental implants were placed in maxillas and mandibles, and IT and the implant stability quotient (ISQ) were measured at the time of implant insertion. Bone density was assessed subjectively by the Lekholm and Zarb index. The type I and II densities were grouped together (group A)as were the type III and IV densities (group B). The IT in group A was higher (Student t test, P = .0013) than in group B (46.27 +/- 18.51 Ncm, 33.62 +/- 14.74 Ncm, respectively). The implants placed in group A showed higher ISQ (Student t test, P = .0004) than those placed in group B (70.09 +/- 7.50, 63.66 +/- 8.00, respectively). A significant correlation between IT and the ISQ value was observed for group A (Pearson correlation test; r = 0.35; P = .0213) and for group B (r = 0.37; P = .0224). Within the limitations of this study, it was possible to conclude that there is a correlation between IT and RFA of implants placed in mandibles and maxillas of different bone densities.
Resumo:
Aquaculture practices usually put the Nile tilapia in an artificial social environment, which males predominate due to their faster growth desirable for aquaculture purposes. Such a situation can increase male-male fighting because males are generally more aggressive than females, and also because fighting ability is similar within the same sex, leading to longer contests. As behavior has been used to infer welfare in several fish species, the aim of this study was to investigate whether sex composition affects agonistic interactions, social hierarchy and energetic demand in groups of Nile tilapia (Oreochromis niloticus; L.). Size-matched adult fish were divided in two treatments: MM = four males and MF = two males and two females (10 repetitions for each treatment). The experiment lasted for 11 days and social interactions (aggressiveness and rank order) were recorded at the 2nd, 6th and 10th days (15 min per day). Fish were food deprived and body weight loss was used to infer energetic cost. A higher frequency of lateral threat (Student’s t independent test; t = 2.55; p = 0.02) and total interactions (Student’s t independent test; t = -2.81; p = 0.01) was observed in the MF treatment. MM group showed unstable hierarchy (Binomial test, p = 0.04), which is considered a social stressor. However, mean weight loss was not affected by treatments (Student’s t independent test; t = -0.74; p = 0.47). These results support the idea that sexual composition affects aggressive interactions and destabilizes social hierarchy, but not energy cost
Resumo:
In a smart grid environment, attention should be paid not only to the power supplied to satisfy loads and system losses but also to the services necessary to provide security and stability to the system: the so-called ancillary services. As they are well known the benefits that distributed generation can bring to electrical systems and to the environment, in this work the possibility that active power reserve for frequency control could be provided by distributed generators (DGs) in an efficient and economical way is explored. The proposed methodology was tested using the IEEE 34-bus distribution test system. The results show improvements in the capacity of the system for this ancillary service and decrease in system losses and payments of the distribution system operator to the DGs.
Resumo:
Short implants are increasingly used, but there is doubt about their performance being similar to that of regular implants. The aim of this study was to compare the mechanical stability of short implants vs. regular implants placed in the edentulous posterior mandible. Twenty-three patients received a total of 48 short implants (5 × 5.5 mm and 5 × 7 mm) and 42 regular implants (4 × 10 mm and 4 × 11.5 mm) in the posterior mandible. Patients who received short implants had <10 mm of bone height measured from the bone crest to the outer wall of the mandibular canal. Resonance frequency analysis (RFA) was performed at time intervals T0 (immediately after implant placement), T1 (after 15 days), T2 (after 30 days), T3 (after 60 days), and T4 (after 90 days). The survival rate after 90 days was 87.5% for the short implants and 100% for regular implants (P < 0.05). There was no significant difference between the implants in time intervals T1, T2, T3, and T4. In T0, the RFA values of 5 × 5.5 implants were higher than values of 5 × 7 and 4 × 11.5 implants (P < 0.05). A total of six short implants that were placed in four patients were lost (three of 5 × 5.5 mm and three of 5 × 7 mm). Three lost implants started with high ISQ values, which progressively decreased. The other three lost implants started with a slightly lower ISQ value, which rose and then began to fall. Survival rate of short implants after 90 days was lower than that of regular implants. However, short implants may be considered a reasonable alternative for rehabilitation of severely resorbed mandibles with reduced height, to avoid performing bone reconstruction before implant placement. Patients need to be aware of the reduced survival rate compared with regular implants before implant placement to avoid disappointments.
Resumo:
Synchronous telecommunication networks, distributed control systems and integrated circuits have its accuracy of operation dependent on the existence of a reliable time basis signal extracted from the line data stream and acquirable to each node. In this sense, the existence of a sub-network (inside the main network) dedicated to the distribution of the clock signals is crucially important. There are different solutions for the architecture of the time distribution sub-network and choosing one of them depends on cost, precision, reliability and operational security. In this work we expose: (i) the possible time distribution networks and their usual topologies and arrangements. (ii) How parameters of the network nodes can affect the reachability and stability of the synchronous state of a network. (iii) Optimizations methods for synchronous networks which can provide low cost architectures with operational precision, reliability and security. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Objective: To evaluate 16 patients of both sexes with lower overdenture and upper complete dentures, by analysing the resonance frequency of the initial and late stability of implants used to retain the overdenture under immediate loading. Background: Oral rehabilitation treatment with complete dentures using implants has been increasingly more common among the specialists in the oral rehabilitation area. This is an alternative for obtaining retention and stability in treatments involving conventional complete dentures, where two implants are enough to retain the overdenture satisfactorily. Materials and methods: The Osstell (TM) Mentor device was used for the analysis in the initial period (primary stability), 3 and 15 months after the installation of the lower overdenture (secondary stability). The statistical analysis was performed with the repeated measures model (p < 0.01). Results: The implant stability quotients were observed to increase after 15 months of the rehabilitating treatment. Conclusion: The use of overdentures over two lower implants should become the treatment of choice for individuals who have a fully edentulous mandible.
Resumo:
Surface treatment interferes with the primary stability of dental implants because it promotes a chemical and micromorphological change on the surface and thus stimulates osseointegration. This study aimed to evaluate the effects of different surface treatments on primary stability by analyzing insertion torque (IT) and pullout force (PF). Eight samples of implants with different surface treatments (TS - external hexagon with acid surface treatment; and MS - external hexagon, machined surface), all 3.75 mm in diameter x 11.5 mm in length, were inserted into segments of artificial bones. The IT of each sample was measured by an electronic torquemeter, and then the pullout test was done with a universal testing machine. The results were subjected to ANOVA (p < 0.05), followed by Tukey's test (p < 0.05). The IT results showed no statistically significant difference, since the sizes of the implants used were very similar, and the bone used was not highly resistant. The PF values (N) were, respectively, TS = 403.75 +/- 189.80 and MS = 276.38 +/- 110.05. The implants were shown to be different in terms of the variables of maximum force (F = 4.401, p = 0.0120), elasticity in maximum flexion (F = 3.672, p = 0.024), and relative stiffness (F = 4.60, p = 0.01). In this study, external hexagonal implants with acid surface treatment showed the highest values of pullout strength and better stability, which provide greater indication for their use.