952 resultados para Frequency control


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The optoacoustic signal generated by pulsed 10.6 c infrared radiation incident upon a test cell filled with gaseous SF6 has been analyzed in detail. The effects ofm icroscopic energy transfer from the absorbing vibrational degrees of freedom, spontaneous emission, thermal conduction, and acoustic wave propagation are included. This complete treatment explains the experimental observations including a negative pressure response following irradiation at low gas pressure.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A two-step viscoelastic spherical indentation method is proposed to compensate for 1) material relaxation and 2) sample thickness. In the first step, the indenter is moved at a constant speed and the reaction force is measured. In the second step, the indenter is held at a constant position and the relaxation response of the material is measured. Then the relaxation response is fit with a multi-exponential function which corresponds to a three-branch general Maxwell model. The relaxation modulus is derived by correcting the finite ramp time introduced in the first step. The proposed model takes into account the sample thickness, which is important for applications in which the sample thickness is less than ten times the indenter radius. The model is validated numerically by finite element simulations. Experiments are carried out on a 10% gelatin phantom and a chicken breast sample with the proposed method. The results for both the gelatin phantom and the chicken breast sample agree with the results obtained from a surface wave method. Both the finite element simulations and experimental results show improved elasticity estimations by incorporating the sample thickness into the model. The measured shear elasticities of the 10% gelatin sample are 6.79 and 6.93 kPa by the proposed finite indentation method at sample thickness of 40 and 20 mm, respectively. The elasticity of the same sample is estimated to be 6.53 kPa by the surface wave method. For the chicken breast sample, the shear elasticity is measured to be 4.51 and 5.17 kPa by the proposed indentation method at sample thickness of 40 and 20 mm, respectively. Its elasticity is measured by the surface wave method to be 4.14 kPa. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we demonstrate synchronization of two electrically coupled MEMS oscillators incorporating nearly identical silicon tuning fork microresonators. It is seen that as the output of the oscillators are coupled, they exhibit a synchronized response wherein the output amplitudes and signal-to-noise ratios of the two oscillators are improved relative to the case where the two oscillators are uncoupled. The observed output frequency of each oscillator before coupling is 219402.4 Hz and 219403.6 Hz respectively. In contrast, when the oscillators are driven simultaneously, they lock at a common output frequency of 219401.3 Hz and their outputs are found to be out-of-phase with respect to each other. A 6 dBm gain in output power and a reduction in the phase fluctuations of the output signal are observed for the coupled oscillators compared to the case when the oscillators are uncoupled. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Film bulk acoustic resonator (FBAR) devices with carbon nanotube (CNT) electrodes directly grown on a ZnO film by thermal chemical vapor deposition have been fabricated. CNT electrodes possess a very low density and high acoustic impedance, which reduces the intrinsic mass loading effect resulting from the electrodes' weight and better confines the longitudinal acoustic standing waves inside the resonator, in turn providing a resonator with a higher quality factor. The influence of the CNTs on the frequency response of the FBAR devices was studied by comparing two identical sets of devices; one set comprised FBARs fabricated with chromium/ gold bilayer electrodes, and the second set comprised FBARs fabricated with CNT electrodes. It was found that the CNTs had a significant effect on attenuating traveling waves at the surface of the FBARs' membranes because of their high elastic stiffness. Three-dimensional finite element analysis of the devices fabricated was carried out, and the numerical simulations were consistent with the experimental results obtained. © 2011 IEEE.