881 resultados para Frequency Stabilisation
Resumo:
In small estuaries, the predictions of scalar dispersion can rarely be predicted accurately because of a lack of fundamental understanding of the turbulence structure. Herein detailed turbulence measurements and suspended sediment concentrations were conducted simultaneously and continuously at high-frequency for 50 hours per investigation in a small subtropical estuary with semi-diurnal tides. The data analyses provided an unique characterisation of the turbulent mixing processes and suspended sediment fluxes. The turbulence was neither homogeneous nor isotropic, and it was not a Gaussian process. The integral time scales for turbulence and suspended sediment concentration were about equal during flood tides, but differed significantly during ebb tides. The field experiences showed that the turbulence measurements must be conducted at high-frequency to characterise the small eddies and the viscous dissipation process, while a continuous sampling was necessary to characterise the time-variations of the instantaneous velocity field, Reynolds stress tensor and suspended sediment flux during the tidal cycles.
Resumo:
Traditional waste stabilisation pond (WSP) models encounter problems predicting pond performance because they cannot account for the influence of pond features, such as inlet structure or pond geometry, on fluid hydrodynamics. In this study, two dimensional (2-D) computational fluid dynamics (CFD) models were compared to experimental residence time distributions (RTD) from literature. In one of the-three geometries simulated, the 2-D CFD model successfully predicted the experimental RTD. However, flow patterns in the other two geometries were not well described due to the difficulty of representing the three dimensional (3-D) experimental inlet in the 2-D CFD model, and the sensitivity of the model results to the assumptions used to characterise the inlet. Neither a velocity similarity nor geometric similarity approach to inlet representation in 2-D gave results correlating with experimental data. However. it was shown that 2-D CFD models were not affected by changes in values of model parameters which are difficult to predict, particularly the turbulent inlet conditions. This work suggests that 2-D CFD models cannot be used a priori to give an adequate description of the hydrodynamic patterns in WSP. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Multi-frequency bioimpedance analysis (MFBIA) was used to determine the impedance, reactance and resistance of 103 lamb carcasses (17.1-34.2 kg) immediately after slaughter and evisceration. Carcasses were halved, frozen and one half subsequently homogenized and analysed for water, crude protein and fat content. Three measures of carcass length were obtained. Diagonal length between the electrodes (right side biceps femoris to left side of neck) explained a greater proportion of the variance in water mass than did estimates of spinal length and was selected for use in the index L-2/Z to predict the mass of chemical components in the carcass. Use of impedance (Z) measured at the characteristic frequency (Z(c)) instead of 50 kHz (Z(50)) did not improve the power of the model to predict the mass of water, protein or fat in the carcass. While L-2/Z(50) explained a significant proportion of variation in the masses of body water (r(2) 0.64), protein (r(2) 0.34) and fat (r(2) 0.35), its inclusion in multi-variate indices offered small or no increases in predictive capacity when hot carcass weight (HCW) and a measure of rib fat-depth (GR) were present in the model. Optimized equations were able to account for 65-90 % of the variance observed in the weight of chemical components in the carcass. It is concluded that single frequency impedance data do not provide better prediction of carcass composition than can be obtained from measures of HCW and GR. Indices of intracellular water mass derived from impedance at zero frequency and the characteristic frequency explained a similar proportion of the variance in carcass protein mass as did the index L-2/Z(50).
Resumo:
The nonlinear response of a chaotic system to a chaotic variation in a system parameter is investigated experimentally. Clear experimental evidence of frequency entrainment of the chaotic oscillations is observed. We show that analogous to the frequency locking between coupled periodic oscillations, this effect is generic for coupled chaotic systems.
Resumo:
Frequency, recency, and type of prior exposure to very low-and high-frequency words were manipulated in a 3-phase (i.e., familiarization training, study, and test) design. Increasing the frequency with which a definition for a very low-frequency word was provided during familiarization facilitated the word's recognition in both yes-no (Experiment 1) and forced-choice paradigms (Experiment 2). Recognition of very low-frequency words not accompanied by a definition during familiarization first increased, then decreased as familiarization frequency increased (Experiment I). Reasons for these differences were investigated in Experiment 3 using judgments of recency and frequency. Results suggested that prior familiarization of a very low-frequency word with its definition may allow a more adequate episodic representation of the word to be formed during a subsequent study trial. Theoretical implications of these results for current models of memory are discussed.
Resumo:
The performance of three analytical methods for multiple-frequency bioelectrical impedance analysis (MFBIA) data was assessed. The methods were the established method of Cole and Cole, the newly proposed method of Siconolfi and co-workers and a modification of this procedure. Method performance was assessed from the adequacy of the curve fitting techniques, as judged by the correlation coefficient and standard error of the estimate, and the accuracy of the different methods in determining the theoretical values of impedance parameters describing a set of model electrical circuits. The experimental data were well fitted by all curve-fitting procedures (r = 0.9 with SEE 0.3 to 3.5% or better for most circuit-procedure combinations). Cole-Cole modelling provided the most accurate estimates of circuit impedance values, generally within 1-2% of the theoretical values, followed by the Siconolfi procedure using a sixth-order polynomial regression (1-6% variation). None of the methods, however, accurately estimated circuit parameters when the measured impedances were low (<20 Omega) reflecting the electronic limits of the impedance meter used. These data suggest that Cole-Cole modelling remains the preferred method for the analysis of MFBIA data.
Resumo:
A method for the accurate computation of the current densities produced in a wide-runged bi-planar radio-frequency coil is presented. The device has applications in magnetic resonance imaging. There is a set of opposing primary rungs, symmetrically placed on parallel planes and a similar arrangement of rungs on two parallel planes surrounding the primary serves as a shield. Current densities induced in these primary and shielding rungs are calculated to a high degree of accuracy using an integral-equation approach, combined with the inverse finite Hilbert transform. Once these densities are known, accurate electrical and magnetic fields are then computed without difficulty. Some test results are shown. The method is so rapid that it can be incorporated into optimization software. Some preliminary fields produced from optimized coils are presented.
Resumo:
Curing of diglycidyl ether of bisphenol A/diaminodiphenyl sulfone (DGEBA/DDS) epoxy resin has been effected by heating with radio frequency (RF) radiation at frequencies of 30-99 MHz. The epoxy resins can be cured rapidly at low RF power levels. Comparison of the kinetics of the RF curing with thermal curing while maintaining the same curing temperature revealed no differences. Previous differences in rates of thermal and microwave curing are believed to be due to lack of temperature control during microwave curing. For RF curing,the rate of cure, at constant power level, increases at lower RF frequency, thus emphasizing one of the principal advantages of RF curing over microwave curing. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Bioelectrical impedance analysis has found extensive application as a simple noninvasive method for the assessment of body fluid volumes, The measured impedance is, however, not only related to the volume of fluid but also to its inherent resistivity. The primary determinant of the resistivities of body fluids is the concentration of ions. The aim of this study was to investigate the sensitivity of bioelectrical impedance analysis to bodily ion status. Whole body impedance over a range of frequencies (4-1012 kHz) of rats was measured during infusion of various concentrations of saline into rats concomitant with measurement of total body and intracellular water by tracer dilution techniques. Extracellular resistance (R-o), intracellular resistance (R-i) and impedance at the characteristic frequency (Z(c)) were calculated. R-o and Z(c) were used to predict extracellular and total body water respectively using previously published formulae. The results showed that whilst R-o and Z(c) decreased proportionately to the amount of NaCl infused, R-i increased only slightly. Impedances at the end of infusion predicted increases iu TBW and ECW of approximately 4-6% despite a volume increase of less than 0.5% in TBW due to the volume of fluid infused. These data are discussed in relation to the assumption of constant resistivity in the prediction of fluid volumes from impedance data.
Resumo:
A variety of adhesive support-films were tested for their ability to adhere various biological specimens for transmission electron microscopy. Support films primed with 3-amino-propyl triethoxy silane (APTES), poly-L-lysine, carbon and ultraviolet-B (UV-B)-irradiated carbon were tested for their ability to adhere a variety of biological specimens including axenic cultures of Bacillus subtilis and Escherichia coli and wild-type magnetotactic bacteria. The effects of UV-B irradiation on the support film in the presence of air and electrostatic charge on primer deposition were tested and the stability of adhered specimens on various surfaces was also compared. APTES-primed UV-B-irradiated Pioloform(TM) was consistently the best adhesive, especially for large cells, and when adhered specimens were UV-B irradiated they became remarkably stable under an electron beam. This assisted the acquisition of in situ phase-contrast lattice images from a variety of biominerals in magnetotactic bacteria, in particular metastable greigite magnetosomes. Washing tests indicated that specimens adhering to APTES-primed UV-B-irradiated Pioloform(TM) were covalently coupled. The electron beam stability was hypothesised to be the result of mechanical strengthening of the specimen and support film and the reduced electrical resistance in the specimen and support film due to their polymerization and covalent coupling.
Resumo:
We propose a single optical photon source for quantum cryptography based on the acoustoelectric effect. Surface acoustic waves (SAWs) propagating through a quasi-one-dimensional channel have been shown to produce packets of electrons that reside in the SAW minima and travel at the velocity of sound. In our scheme, the electron packets are injected into a p-type region, resulting in photon emission. Since the number of electrons in each packet can be controlled down to a single electron, a stream of single- (or N-) photon states, with a creation time strongly correlated with the driving acoustic field, should be generated.