985 resultados para Free zone
Resumo:
The room temperature (RT) tensile behaviour of a free-standing high activity Pt-aluminide bond coat has been evaluated by microtensile testing technique. The coating had a typical three-layer microstructure. The stress-strain plot for the free-standing coating was linear, indicating the coating to be brittle at RT. Different fracture features were observed across the coating layers, namely quasi-cleavage in the outer layer and inner interdiffusion zone, and cleavage in the intermediate layer. By employing interrupted tensile test and observing the cross-sectional microstructure of the tested specimens, it was determined that failure of the microtensile samples occurred by the initiation of a single crack in the intermediate layer of the coating and its subsequent inside-out propagation. Such a mechanism of failure has been explained in terms of the fracture features observed across the sample thickness. This mechanism of failure is consistent with fracture toughness values of the individual coating layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Scaled Particle Theory (SPT) has been applied to predict the total free energies of micellization of ionic as well as nonionic micellar systems containing an aryl ring. A modification of the previously developed model has been made, proposing a two-zone model of micellar core which corroborates with the structural information available for such systems. The results are in good agreement with experimental data and also confirm the dictating role of cavity forming free energies for such systems
Resumo:
Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (sigma = K-1 epsilon(n1)) at higher (> 623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower (< 623 K) temperatures. The Ludwigson modification of Hollomon's equation, sigma = K-1 epsilon(n1) + exp (K-2 + n(2) epsilon), was found to describe the flow curve. In general, the flow parameters n(1), K-1, n(2) and K-2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n(1) Value increased and the K-1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of nl with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n(1).
Resumo:
Combination of femtosecond Kerr, two photon absorption, and impulsive stimulated Raman scattering (ISRS) experiments have been carried out to investigate the effect of pulse energy and crystal temperature on the generation of coherent polaritons and phonons in 〈110〉 cut ZnTe single crystals of three different resistivities. We demonstrate that the effect of two photon induced free carriers on the creation of both the polaritons and phonons is largest at 4 K where the free carrier lifetime is enhanced. The temperature dependant ISRS on high and low purity ZnTe crystals allows us to unambiguously assign the phonon mode at 3.5 THz to the longitudinal acoustic mode at X-point in the Brillouin zone, LA(X).
Resumo:
Assessment of chemistry of groundwater infiltrated by pit-toilet leachate and contaminant removal by vadose zone form the focus of this study. The study area is Mulbagal Town in Karnataka State, India. Groundwater level measurements and estimation of unsaturated permeability indicated that the leachate recharged the groundwater inside the town at the rate of 1 m/day. The average nitrate concentration of groundwater inside the town (148 mg/L) was three times larger than the permissible limit (45 mg/L), while the average nitrate concentration of groundwater outside the town (30 mg/L) was below the permissible limit. The groundwater inside the town exhibited E. coli contamination, while groundwater outside the town was free of pathogen contamination. Infiltration of alkalis (Na+, K+) and strong acids (Cl-, SO4 (2-)) caused the mixed Ca-Mg-Cl type (60 %) and Na-Cl type (28 %) facies to predominate groundwater inside the town, while, Ca-HCO3 (35 %), mixed Ca-Mg-Cl type (35 %) and mixed Ca-Na-HCO3 type (28 %) facies predominated groundwater outside/periphery of town. Reductions in E. coli and nitrate concentrations with vadose zone thickness indicated its participation in contaminant removal. A 4-m thickness of unsaturated sand + soft, disintegrated weathered rock deposit facilitates the removal of 1 log of E. coli pathogen. The anoxic conditions prevailing in the deeper layers of the vadose zone (> 19 m thickness) favor denitrification resulting in lower nitrate concentrations (28-96 mg/L) in deeper water tables (located at depths of -29 to -39 m).
Resumo:
Pt-modified beta-NiAl bond coats are applied over the superalloys for oxidation protection in jet engine applications. However, as shown in this study, it also enhances the growth of the interdiffusion zone developed between the bond coat and the superalloy along with brittle precipitates. Location of the Kirkendall plane indicates that a precipitate free sublayer grows from the bond coat, whereas another sublayer grows from the superalloy containing very high volume fraction of precipitates. With increasing Pt content, thickness of both the sublayers increases because of an increase in diffusion rates of the components. Quantitative electron probe microanalysis indicates high concentration of refractory components in the precipitates. Transmission electron microscopy shows that Rene N5 superalloy produces TCP phases mu and P, whereas CMSX-4 superalloy produces mu and sigma in the interdiffusion zone. With increasing Pt content in the bond coat, the average size of the precipitates decreases when coupled with Rene N5. Precipitates become much finer when the same bond coats are coupled with CMSX-4. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Pt-modified beta-NiAl bond coats are applied over the superalloys for oxidation protection in jet engine applications. However, as shown in this study, it also enhances the growth of the interdiffusion zone developed between the bond coat and the superalloy along with brittle precipitates. Location of the Kirkendall plane indicates that a precipitate free sublayer grows from the bond coat, whereas another sublayer grows from the superalloy containing very high volume fraction of precipitates. With increasing Pt content, thickness of both the sublayers increases because of an increase in diffusion rates of the components. Quantitative electron probe microanalysis indicates high concentration of refractory components in the precipitates. Transmission electron microscopy shows that Rene N5 superalloy produces TCP phases mu and P, whereas CMSX-4 superalloy produces mu and sigma in the interdiffusion zone. With increasing Pt content in the bond coat, the average size of the precipitates decreases when coupled with Rene N5. Precipitates become much finer when the same bond coats are coupled with CMSX-4. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The magnetic damping effect of the non-uniform magnetic field on the floating-zone crystal growth process in microgravity is studied by numerical simulation. The results show that the non-uniform magnetic field with designed configuration can effectively reduce the flow near the free surface and then in the melt zone. At the same time, the designed magnetic field can improve the impurity concentration non-uniformity along the solidification interface. The primary principles of the magnetic field configuration design are also discussed.
Resumo:
The magnetic fields produced by electrical coils are designed for damping the the thermocapillary convection in a floating half-zone in microgravity. The fields are designed specially to reduce the flow near the free surface and then in the melt zone by adjusting the longitudinal coil positions close to the melt zone. The effects of the designed magnetic fields on reducing the flow velocity and temperature distribution non-uniformity in the melt zone are stronger than those of the case of an uniform longitudinal magnetic field obtained by numerical simulation, particularly at the melt-rod interface. It brings fundamental insights into the heat and mass transfer control at the solidification interface by the magnetic field design for crystal growth by the floating full-zone method.
Resumo:
The magnetic fields produced by electrical coils are designed for P-doped Si crystal growth in a floating full zone in microgravity environment. The fields are designed specially to reduce the how near the free surface and then in the melt zone by adjusting the coil positions near the melt zone. The effects of the designed magnetic fields on reducing the Row velocity and the non-uniformity of the concentration distribution in the melt zone are better than those of the case of a uniform longitudinal magnetic field, obtained by numerical simulation. It is expected to improve the radial macro-segregation and reduce the convection in the crystal growth at the same time by using the designed magnetic field.
Resumo:
Oscillatory features of floating half zone convection were experimentally studied by using the drop shaft facility of Japan Microgravity Center which supported microgravity period of 10 s. Coordinated measurements including free surface deformation and oscillation, temperature and flow pattern in both 1-g and micro-g environment were obtained. The oscillatory frequency and amplitude in micro-g condition were lower and larger than the ones in l-g condition, respectively. The results gave, at first time, the oscillatory features such as free surface wave in micro-g, coordinated measurements of more than two physical quantities in the micro-g, and transition of thermocapillary oscillatory convection from I-g to micro-g.
Resumo:
A simulation model with adiabatic condition at the upper rod and constant temperature at the lower rod is studied numerically in this paper. The temperature distribution in a simulation model is closer to the one in the half part of a floating full zone in comparison with the one in a usual floating half zone model with constant temperature at both rods, because the temperature distribution of a floating full zone is symmetric for the middle plane in a microgravity environment. The results of the simulation model show that the temperature profiles and the how patterns are different from those of the usual floating half zone model. Another type of half zone model, with a special non-uniform temperature distribution at the upper rod and constant temperature at the lower rod, has been suggested by recent experiments. The temperature boundary condition of the upper rod has a maximum value in the center and a lower value near the free surface. This modified simulation model is also simulated numerically in the present paper. Copyright (C)1996 Elsevier Science Ltd.
Resumo:
The g-jitter effects on the thermocapillary convection in liquid bridge of floating half zone were studied by numerical simulation for unsteady and axi-symmetric model in the cylindrical coordinate system. The g-jitter field was given by a steady microgravity field in addition to an oscillatory low-gravity field, and the effects on the flow field, temperature distribution and free surface deformation were analyzed numerically.
Resumo:
In the present paper, the coordinated measurements of the temperature profile inside the liquid bridge and the boundary variation of Free surface, in addition to other quantities, were obtained in the same time for the half floating zone convection. The results show that the onset of free surface oscillation is earlier than the one of temperature oscillation during the increasing of applied temperature difference, and the critical Marangoni numbers, defined usually by temperature measurement, are larger than the one defined by free surface measurement, and the difference depends on the volume of liquid bridge. These results induce the question, ''How to determine experimentally the critical Marangoni number?'' Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Coordinated measurement of temperature, velocity and free surface oscillation were obtained by using the drop shaft facility for microgravity experiments of half floating zone convection. The ground-based studies gave transition from steady to oscillatory convection for multi-quantities measurement.