876 resultados para Fourier transform infrared analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods of assessment of compost maturity are needed so the application of composted materials to lands will provide optimal benefits. The aim of the present paper is to assess the maturity reached by composts from domestic solid wastes (DSW) prepared under periodic and permanent aeration systems and sampled at different composting time, by means of excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform infrared spectroscopy (FT-IR). EEM spectra indicated the presence of two different fluorophores centered, respectively, at Ex/Em wavelength pairs of 330/425 and 280/330 nm. The fluorescence intensities of these peaks were also analyzed, showing trends related to the maturity of composts. The contour density of EEM maps appeared to be strongly reduced with composting days. After 30 and 45 days of composting, FT-IR spectra exhibited a decrease of intensity of peaks assigned to polysaccharides and in the aliphatic region. EEM and FT-IR techniques seem to produce spectra that correlate with the degree of maturity of the compost. Further refinement of these techniques should provide a relatively rapid method of assessing the suitability of the compost to land application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: Fourier transform infrared spectroscopy (FTIRS) can provide detailed information on organic and minerogenic constituents of sediment records. Based on a large number of sediment samples of varying age (0�340 000 yrs) and from very diverse lake settings in Antarctica, Argentina, Canada, Macedonia/Albania, Siberia, and Sweden, we have developed universally applicable calibration models for the quantitative determination of biogenic silica (BSi; n = 816), total inorganic carbon (TIC; n = 879), and total organic carbon (TOC; n = 3164) using FTIRS. These models are based on the differential absorbance of infrared radiation at specific wavelengths with varying concentrations of individual parameters, due to molecular vibrations associated with each parameter. The calibration models have low prediction errors and the predicted values are highly correlated with conventionally measured values (R = 0.94�0.99). Robustness tests indicate the accuracy of the newly developed FTIRS calibration models is similar to that of conventional geochemical analyses. Consequently FTIRS offers a useful and rapid alternative to conventional analyses for the quantitative determination of BSi, TIC, and TOC. The rapidity, cost-effectiveness, and small sample size required enables FTIRS determination of geochemical properties to be undertaken at higher resolutions than would otherwise be possible with the same resource allocation, thus providing crucial sedimentological information for climatic and environmental reconstructions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and costeffective technique and only small sediment samples are needed (0.01 g). Statistically significant models were developed using sediment samples from northern Sweden and were applied to sediment records from Sweden, northeast Siberia and Macedonia. The correlation between FTIRS-inferred values and amounts of biogeochemical constituents assessed conventionally varied between r = 0.84–0.99 for TOC, r = 0.85– 0.99 for TIC, and r = 0.68–0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of the tetrameric K+ channel from Streptomyces lividans in a lipid bilayer environment was studied by polarized attenuated total reflection Fourier transform infrared spectroscopy. The channel displays approximately 43% α-helical and 25% β-sheet content. In addition, H/D exchange experiments show that only 43% of the backbone amide protons are exchangeable with solvent. On average, the α-helices are tilted 33° normal to the membrane surface. The results are discussed in relationship to the lactose permease of Escherichia coli, a membrane transport protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolated immature maize (Zea mays L.) embryos have been shown to acquire tolerance to rapid drying between 22 and 25 d after pollination (DAP) and to slow drying from 18 DAP onward. To investigate adaptations in protein profile in association with the acquisition of desiccation tolerance in isolated, immature maize embryos, we applied in situ Fourier transform infrared microspectroscopy. In fresh, viable, 20- and 25-DAP embryo axes, the shapes of the different amide-I bands were identical, and this was maintained after flash drying. On rapid drying, the 20-DAP axes had a reduced relative proportion of α-helical protein structure and lost viability. Rapidly dried 25-DAP embryos germinated (74%) and had a protein profile similar to the fresh control axes. On slow drying, the α-helical contribution in both the 20- and 25-DAP embryo axes increased compared with that in the fresh control axes, and survival of desiccation was high. The protein profile in dry, mature axes resembled that after slow drying of the immature axes. Rapid drying resulted in an almost complete loss of membrane integrity in the 20-DAP embryo axes and much less so in the 25-DAP axes. After slow drying, low plasma membrane permeability ensued in both the 20- and 25-DAP axes. We conclude that slow drying of excised, immature embryos leads to an increased proportion of α-helical protein structures in their axes, which coincides with additional tolerance of desiccation stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental evidence for proton transfer via a hydrogen-bonded network in a membrane protein is presented. Bacteriorhodopsin's proton transfer mechanism on the proton uptake pathway between Asp-96 and the Schiff base in the M-to-N transition was determined. The slowdown of this transfer by removal of the proton donor in the Asp-96-->Asn mutant can be accelerated again by addition of small weak acid anions such as azide. Fourier-transform infrared experiments show in the Asp-96-->Asn mutant a transient protonation of azide bound to the protein in the M-to-N transition and, due to the addition of azide, restoration of the IR continuum band changes as seen in wild-type bR during proton pumping. The continuum band changes indicate fast proton transfer on the uptake pathway in a hydrogen-bonded network for wild-type bR and the Asp-96-->Asn mutant with azide. Since azide is able to catalyze proton transfer steps also in several kinetically defective bR mutants and in other membrane proteins, our finding might point to a general element of proton transfer mechanisms in proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two energy grass species, switch grass, a North American tuft grass, and reed canary grass, a European native, are likely to be important sources of biomass in Western Europe for the production of biorenewable energy. Matching chemical composition to conversion efficiency is a primary goal for improvement programmes and for determining the quality of biomass feed-stocks prior to use and there is a need for methods which allow cost effective characterisation of chemical composition at high rates of sample through-put. In this paper we demonstrate that nitrogen content and alkali index, parameters greatly influencing thermal conversion efficiency, can be accurately predicted in dried samples of these species grown under a range of agronomic conditions by partial least square regression of Fourier transform infrared spectra (R2 values for plots of predicted vs. measured values of 0.938 and 0.937, respectively). We also discuss the prediction of carbon and ash content in these samples and the application of infrared based predictive methods for the breeding improvement of energy grasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the consistency of water vapour line intensities in selected spectral regions between 800–12,000 cm−1 under atmospheric conditions using sun-pointing Fourier transform infrared spectroscopy. Measurements were made across a number of days at both a low and high altitude field site, sampling a relatively moist and relatively dry atmosphere. Our data suggests that across most of the 800–12,000 cm−1 spectral region water vapour line intensities in recent spectral line databases are generally consistent with what was observed. However, we find that HITRAN-2008 water vapour line intensities are systematically lower by up to 20% in the 8000–9200 cm−1 spectral interval relative to other spectral regions. This discrepancy is essentially removed when two new linelists (UCL08, a compilation of linelists and ab-initio calculations, and one based on recent laboratory measurements by Oudot et al. (2010) [10] in the 8000–9200 cm−1 spectral region) are used. This strongly suggests that the H2O line strengths in the HITRAN-2008 database are indeed underestimated in this spectral region and in need of revision. The calculated global-mean clear-sky absorption of solar radiation is increased by about 0.3 W m−2 when using either the UCL08 or Oudot line parameters in the 8000–9200 cm−1 region, instead of HITRAN-2008. We also found that the effect of isotopic fractionation of HDO is evident in the 2500–2900 cm−1 region in the observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present cross-validation of remote sensing measurements of methane profiles in the Canadian high Arctic. Accurate and precise measurements of methane are essential to understand quantitatively its role in the climate system and in global change. Here, we show a cross-validation between three datasets: two from spaceborne instruments and one from a ground-based instrument. All are Fourier Transform Spectrometers (FTSs). We consider the Canadian SCISAT Atmospheric Chemistry Experiment (ACE)-FTS, a solar occultation infrared spectrometer operating since 2004, and the thermal infrared band of the Japanese Greenhouse Gases Observing Satellite (GOSAT) Thermal And Near infrared Sensor for carbon Observation (TANSO)-FTS, a nadir/off-nadir scanning FTS instrument operating at solar and terrestrial infrared wavelengths, since 2009. The ground-based instrument is a Bruker 125HR Fourier Transform Infrared (FTIR) spectrometer, measuring mid-infrared solar absorption spectra at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Lab at Eureka, Nunavut (80° N, 86° W) since 2006. For each pair of instruments, measurements are collocated within 500 km and 24 h. An additional criterion based on potential vorticity values was found not to significantly affect differences between measurements. Profiles are regridded to a common vertical grid for each comparison set. To account for differing vertical resolutions, ACE-FTS measurements are smoothed to the resolution of either PEARL-FTS or TANSO-FTS, and PEARL-FTS measurements are smoothed to the TANSO-FTS resolution. Differences for each pair are examined in terms of profile and partial columns. During the period considered, the number of collocations for each pair is large enough to obtain a good sample size (from several hundred to tens of thousands depending on pair and configuration). Considering full profiles, the degrees of freedom for signal (DOFS) are between 0.2 and 0.7 for TANSO-FTS and between 1.5 and 3 for PEARL-FTS, while ACE-FTS has considerably more information (roughly 1° of freedom per altitude level). We take partial columns between roughly 5 and 30 km for the ACE-FTS–PEARL-FTS comparison, and between 5 and 10 km for the other pairs. The DOFS for the partial columns are between 1.2 and 2 for PEARL-FTS collocated with ACE-FTS, between 0.1 and 0.5 for PEARL-FTS collocated with TANSO-FTS or for TANSO-FTS collocated with either other instrument, while ACE-FTS has much higher information content. For all pairs, the partial column differences are within ± 3 × 1022 molecules cm−2. Expressed as median ± median absolute deviation (expressed in absolute or relative terms), these differences are 0.11 ± 9.60 × 10^20 molecules cm−2 (0.012 ± 1.018 %) for TANSO-FTS–PEARL-FTS, −2.6 ± 2.6 × 10^21 molecules cm−2 (−1.6 ± 1.6 %) for ACE-FTS–PEARL-FTS, and 7.4 ± 6.0 × 10^20 molecules cm−2 (0.78 ± 0.64 %) for TANSO-FTS–ACE-FTS. The differences for ACE-FTS–PEARL-FTS and TANSO-FTS–PEARL-FTS partial columns decrease significantly as a function of PEARL partial columns, whereas the range of partial column values for TANSO-FTS–ACE-FTS collocations is too small to draw any conclusion on its dependence on ACE-FTS partial columns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of Congo Red (CR) by ball-milled sugarcane bagasse was evaluated in an aqueous batch system. CR adsorption capacity increased significantly with small changes in bagasse surface area. CR removal decreased with increasing solution pH from 5.0 to 10.0. Maximum adsorption capacity was 38.2 mg/g bagasse at a CR concentration of 500 mg/L. The equilibrium isotherm fitted the Freundlich model and the adsorption kinetics obeyed pseudo-second order equation. CR adsorption obeyed the intra-particle diffusion model very well with bagasse surface area in the range of 0.58–0.66 m2/g, whereas it was controlled by multi-adsorption stages with bagasse surface area in the range of 1.31–1.82 m2/g. Thermodynamic analysis indicated that the adsorption process is an exothermic and spontaneous process. Fourier transform infrared analysis of bagasse containing adsorbed CR indicated interactions between the carboxyl and hydroxyl groups of bagasse and CR function groups.