726 resultados para Foundry engineering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petrov-Galerkin methods are known to be versatile techniques for the solution of a wide variety of convection-dispersion transport problems, including those involving steep gradients. but have hitherto received little attention by chemical engineers. We illustrate the technique by means of the well-known problem of simultaneous diffusion and adsorption in a spherical sorbent pellet comprised of spherical, non-overlapping microparticles of uniform size and investigate the uptake dynamics. Solutions to adsorption problems exhibit steep gradients when macropore diffusion controls or micropore diffusion controls, and the application of classical numerical methods to such problems can present difficulties. In this paper, a semi-discrete Petrov-Galerkin finite element method for numerically solving adsorption problems with steep gradients in bidisperse solids is presented. The numerical solution was found to match the analytical solution when the adsorption isotherm is linear and the diffusivities are constant. Computed results for the Langmuir isotherm and non-constant diffusivity in microparticle are numerically evaluated for comparison with results of a fitted-mesh collocation method, which was proposed by Liu and Bhatia (Comput. Chem. Engng. 23 (1999) 933-943). The new method is simple, highly efficient, and well-suited to a variety of adsorption and desorption problems involving steep gradients. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite clay nanostructures (CCNs) were observed in intercalating Laponite clay with alumina in the presence of alkyl polyether surfactants which contain hydrophobic alkyl chains and ether groups. Such nanostructured clays are highly porous solids consisting of randomly orientated clay platelets intercalated with alumina nanoparticles. The pores in the product solids are larger than the dimension of the surfactant molecules, ranging from 2 to 10 nm. This suggests that the micelles of the surfactant molecules, rather than the molecules, act as templates in the synthesis. Interestingly, it is found that the size of the framework pores was directly proportional to the amount of the surfactants in terms of moles, but shows no evident dependence on the size of the surfactant molecules. Broad pore size distributions were observed for the product CCNs. This study demonstrates that introducing surfactants in the pillaring process of clays is a powerful strategy for tailoring the pore structures of nanoporous clays. With this new technique, it is possible to design and engineer such composite clay nanostructures with desired pore and surface properties by the proper choice of surfactant amounts and preparation conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of eutectic modification by strontium on nucleation and growth of the eutectic in hypoeutectic Al-Si foundry alloys has been investigated by electron back-scattering diffraction (EBSD) mapping. Specimens were prepared from three hypoeutectic AlSi base alloys with 5, 7 and 10 mass%Si and with different strontium contents up to 740 ppm for modification of eutectic silicon. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites? the growth mode of the eutectic could be determined. The mapping results indicate that the eutectic grew from the primary phase in unmodified alloys. When the eutectic was modified by strontium, eutectic grains nucleated separately from the primary dendrites. However, in alloys with high strontium levels, the eutectic again grew from the primary phase. These observed effects of strontium additions on the eutectic solidification mode are independent of silicon content in the range between 5 and 10 mass%Si.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of sodium (Na) on nucleation and growth of the Al-Si eutectic in a commercial hypoeutectic Al-Si-Cu-Mg foundry alloy has been investigated. The microstructural evolution during eutectic solidification was studied by a quenching technique. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites by EBSD, the eutectic solidification mode could be determined. The results show that the eutectic solidification starts near the mould wall and evolves with front growth opposite the thermal gradient on a macro-scale, and on a micro-scale with independent heterogeneous nucleation of eutectic grains in interdendritic spaces. Na-modified alloys therefore behave significantly differently from those modified by other elemental additions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper attempts a state-of-the-art summary of research into thunderstorm wind fields from an engineering perspective. The characteristics of thunderstorms and the two extreme wind events-tornadoes and downbursts-spawn by thunderstorms are described. The significant differences from traditional boundary layer flows are highlighted. The importance of thunderstorm gusts in the worldwide database of extreme wind events is established. Physical simulations of tornadoes and downbursts are described and discussed leading to the recommendation that Wind Engineering needs to focus more resources on the fundamental issue - What is the flow structure in the strongest winds? © 2002 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Oscillatory baffled reactor (OBR) can be used to produce particles with controlled size and morphology, in batch or continuous flow. This is due to the effect of the superimposed oscillations that radially mixes fluid but still allows plug-flow (or close to plug flow) behaviour in a continuous system. This mixing, combined with a close to a constant level of turbulence intensity in the reactor, leads to tight droplet and subsequent product particle size distributions. By applying population balance equations together with experimental droplet size distributions, breakage rates of droplets can be determined and this is a useful tool for understanding the product engineering in OBRs. (C) 2002 Elsevier Science B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Along with material characteristics and geometry, the climate in which a mine is located can have a dramatic effect on the appropriate options for rehabilitation. The paper outlines the setting, mining, milling and waste disposal at Kidston Gold Mine's open pit operations in the semi-arid climate of North Queensland, Australia, before focusing on the engineering aspects of the rehabilitation of Kidston. The mine took a holistic and proactive approach to rehabilitation, and was prepared to demonstrate a number of innovative approaches, which are described in the paper. Engineering issues that had to be addressed included the geotechnical stability and deformation of waste rock dumps, including a 240 m high in-pit dump: the construction and performance monitoring of a “store and release” cover over potentially acid forming mineralised waste rock; erosion from the side slopes of the waste rock dumps; the in-pit co-disposal of waste rock and thickened tailings; the geotechnical stability of the tailings dam wall; the potential for erosion of bare tailings; the water balance of the tailings dam; direct revegetation of the tailings; and the pit hydrology. The rehabilitation of the mine represents an important benchmark in mine site rehabilitation best practice, from which lessons applicable worldwide can be shared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regeneration of osseous defects by a tissue-engineering approach provides a novel means of treatment utilizing cell biology, materials science, and molecular biology. In this study the concept of tissue engineering was tested with collagen type I matrices seeded with cells with osteogenic potential and implanted into sites where osseous damage had occurred. Explant cultures of cells from human alveolar bone and gingiva were established. When seeded into a three-dimensional type I collagen-based scaffold, the bone-derived cells maintained their osteoblastic phenotype as monitored by mRNA and protein levels of the bone-related proteins including bone sialoprotein, osteocalcin, osteopontin, bone morphogenetic proteins 2 and 4, and alkaline phosphatase. These in vitro-developed matrices were implanted into critical-size bone defects in skulls of immunodeficient (SCID) mice. Wound healing was monitored for up to 4 weeks. When measured by microdensitometry the bone density within defects filled with osteoblast-derived matrix was significantly higher compared with defects filled with either collagen scaffold alone or collagen scaffold impregnated with gingival fibroblasts. New bone formation was found at all the sites treated with the osteoblast-derived matrix at 28 days, whereas no obvious new bone formation was identified at the same time point in the control groups. In situ hybridization for the human-specific Alu gene sequence indicated that the newly formed bone tissue resulted from both transplanted human osteoblasts and endogenous mesenchymal stem cells. The results indicate that cells derived from human alveolar bone can be incorporated into bioengineered scaffolds and synthesize a matrix, which on implantation can induce new bone formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing to be dependent of concentration and solvent used. Treatment with air saturated with methanol was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570-720%), water vapour transmission rate (1083 g/m2/day) and mechanical properties (modulus of elasticity of ~126 MPa). Furthermore, the methanol-treated SELP fiber mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fiber mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports on the influence of polarization and morphology of electroactive poly(vinylidene fluoride), PVDF, on the biological response of myoblast cells. Non-poled, ‘‘poled +’’ and “poled-“ -PVDF were prepared in the form of films. Further, random and aligned electrospun -PVDF fiber mats were also prepared. It is demonstrated that negatively charged surfaces improve cell adhesion and proliferation and that the directional growth of the myoblast cells can be achieved by the cell culture on oriented fibers. Therefore, the potential application of electroative materials for muscle regeneration is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GUIsurfer: A Reverse Engineering Framework for User Interface Software

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphical user interfaces (GUIs) are critical components of today's software. Developers are dedicating a larger portion of code to implementing them. Given their increased importance, correctness of GUIs code is becoming essential. This paper describes the latest results in the development of GUISurfer, a tool to reverse engineer the GUI layer of interactive computing systems. The ultimate goal of the tool is to enable analysis of interactive system from source code.