126 resultados para Formica lugubris
Resumo:
Some ants have an extraordinary form of social organization, called unicoloniality, whereby individuals mix freely among physically separated nests. This mode of social organization has been primarily studied in introduced and invasive ant species, so that the recognition ability and genetic structure of ants forming unicolonial populations in their native range remain poorly known. We investigated the pattern of aggression and the genetic structure of six unicolonial populations of the ant Formica paralugubris at four hierarchical levels: within nests, among nests within the same population, among nests of populations within the Alps or Jura Mountains and among nests of the two mountain ranges. Ants within populations showed no aggressive behaviour, but recognized nonnestmates as shown by longer antennation bouts. Overall, the level of aggression increased with geographic and genetic distance but was always considerably lower than between species. No distinct behavioural supercolony boundaries were found. Our study provides evidence that unicoloniality can be maintained in noninvasive ants despite significant genetic differentiation and the ability to discriminate between nestmates and nonnestmates.
Resumo:
Sex allocation data in social Hymenoptera provide some of the best tests of kin selection, parent-offspring conflict and sex ratio theories. However, these studies critically depend on controlling for confounding ecological factors and on identifying all parties that potentially manipulate colony sex ratio. It has been suggested that maternally inherited parasites may influence sex allocation in social Hymenoptera. If the parasites can influence sex allocation, infected colonies are predicted to invest more resources in females than non-infected colonies, because the parasites are transmitted through females but not males. Prime candidates for such sex ratio manipulation are Wolbachia, because these cytoplasmically transmitted bacteria have been shown to affect the sex ratio of host arthropods by cytoplasmic incompatibility, parthenogenesis, male-killing and feminization. In this study, we tested whether Wolbachia infection is associated with colony sex ratio in two populations of the ant Formica exsecta that have been the subject of extensive sex ratio studies. In these populations colonies specialize in the production of one sex or the other. We found that almost all F. exsecta colonies in both populations are infected with Wolbachia. However, in neither population did we find a significant association in the predicted direction between the prevalence of Wolbachia and colony sex ratio. In particular, colonies with a higher proportion of infected workers did not produce more females. Hence, we conclude that Wolbachia does not seem to alter the sex ratio of its hosts as a means to increase transmission rate in these two populations of ants.
Resumo:
Seloste väitöskirjasta: Wood ants (Formica rufa group) in managed boreal forests : implications for soil properties and tree growth. Dissertationes Forestales 66.
Resumo:
Resumen en inglés
Resumo:
La scarsità di informazioni sulle reazioni che intervengono nel processo di stiratura semipermanente dei capelli e la necessità di trovare prodotti alternativi all’uso della formaldeide ha portato a intraprendere questo lavoro di tesi. Esso si è svolto seguendo due linee principali: l’indagine sui possibili meccanismi di reazione che intervengono fra composti aventi gruppi aldeidici, quali formaldeide o acido gliossilico (particolarmente efficaci nel processo di stiratura), e alcuni amminoacidi presenti nei capelli da un lato, e uno studio sulle modificazioni che intervengono nella fibra attraverso spettroscopia Raman e ATR-FT-IR e microscopia elettronica a scansione (SEM) dall’altro. Partendo dall’ipotesi più plausibile di una addizione sull’atomo di carbonio carbonilico da parte di nucleofili presenti su alcuni residui amminoacidici della catena polipeptidica, sono stati presi in considerazioni tre gruppi funzionali presenti sugli amminoacidi che possono dar luogo ad addizione reversibile al carbonio carbonilico: il gruppo tiolico che comportandosi come nucleofilo allo zolfo potrebbe dare formazione di semitioacetali, il gruppo ossidrilico di amminoacidi come serina e treonina che potrebbe dare semiacetali, ed il gruppo amminico di amminoacidi basici che agendo da nucleofilo all’azoto potrebbe generare immine. Dopo aver indagato sulla reazione fra aldeide formica (o acido gliossilico) con cisteina e derivati, l’indagine è proseguita utilizzando come amminoacido basico modello N-acetil-L-lisina, dove il gruppo amminico in posizione alfa al carbossile è protetto per cercare di mimare la situazione nel polipeptide. Alcune prove sono state condotte facendo reagire questo substrato sia con una serie di aldeidi aromatiche in diverse condizioni sperimentali che con acido gliossilico. In seguito sono state svolte analisi mediante spettroscopia Raman e ATR-FT-IR su ciocche di pelo di yak nelle diverse fasi del trattamento più comunemente utilizzato nella stiratura semipermanente. Questo ha permesso di ottenere indicazioni sia sulle modificazioni della struttura secondaria subite dalla fibra che sul verificarsi di reazioni fra agente lisciante e residui amminoacidici presenti su di essa. Infine è stata svolta un’indagine SEM sia su fibre di yak che su capelli umani ricci per osservare le variazioni superficiali nei diversi stadi del trattamento.
Resumo:
Repetitive DNA sequences present in the genome of Dicrocoelium dendriticum were identified by hybridization of genomic DNA that had been digested with different restriction enzymes with 32P-labeled genomic D. dendriticum DNA. DNA fragments containing repetitive sequences were isolated from PstI-digested D. dendriticum DNA and were subcloned into a plasmid vector. Plasmids containing repetitive sequences were identified by colony hybridization. One of these plasmids, designated Ddr-IV, was isolated and used as a probe in further studies. Ddr-IV is specific for D. dendriticum since it does not hybridize to DNA isolated from other trematodes. In addition, Ddr-IV was capable of detecting D. dendriticum metacercariae in ants (Formica cunicularia, F. rufibarbis, and Lasius sp.), which act as second intermediate hosts in the parasite's life cycle. Since metacercariae constitute the infectious stage of the parasite for grazing animals, Ddr-IV will provide a useful tool for epidemiology studies of dicrocoeliosis.
Resumo:
A grey snapper (Lutjanus griseus), a grouper (Serranidae) and a blackjack (Caranx lugubris) were implicated in three different ciguatera poisonings in Guadeloupe, French West Indies. A mouse bioassay indicated toxicity for each specimens: 0.5-1, greater than or equal to 1 and > 1 M Ug g(-1), respectively. After purification by gel filtration chromatography, the samples were analysed by high-performance liquid chromatography coupled to mass spectrometry (LC-MS). The toxin profiles differ from one fish to another. C-CTX-1 was detected at 0.24, 0.90 and 13.8 ng g(-1) flesh in the snapper, grouper and jack, respectively. It contributed only to part of the whole toxicity determined by the mouse bioassay. Other toxins identified were C-CTX-2 (a C-CTX-1 epimer), three additional isomers of C-CTX-1 or -2, and five ciguatoxin congeners (C-CTX-1127, C-CTX-1143 and its isomer C-CTX-1143a, and C-CTX-1157 and its isomer C-CTX-1157b). Putative hydroxy-polyether-like compounds were also detected in the flesh of the grouper with [M+ + H](+) ions at m/z 851.51, 857.50, 875.51, 875.49 and 895.54 Da. Some of these compounds have the same mass range as some known dinoflagellate toxins. In conclusion, this study confirms the usefulness of LC-MS analysis to determine the ciguatoxins levels and the toxin profile in fish flesh hazardous to humans.
Resumo:
The subfamily Corinninae is characterized and diagnosed. Two synapomorphies are hypothesized for the subfamily, both regarding the male palpal reservoir, which is primarily coiled and presents a sclerotized distal sector. Seventeen genera are recognized, six of which are new: Abapeba (type species Corinna lacertosa Simon), Erendira (type species Corinna pallidoguttata Simon), Septentrinna (type species Corinna bicalcarata Simon), Simonestus (type species Diestus validus Simon), Tapixaua (type species T. callida sp. nov.) and Tupirinna (type species T. rosae sp. nov.). The genera Creugas Thorell, Falconina Brignoli and Paradiestus Mello-Leitão are revalidated. Diestus Simon and Lausus Simon are newly synonymized with Corinna C. L. Koch. Chemmis Simon is included in the synonymy of Megalostrata Karsch. Hypsinotus L. Koch is removed from the synonymy of Corinna and included in the synonymy of Creugas. Thirteen new species are described: Septentrinna yucatan and S. potosi from Mexico; Tupirinna rosae from Venezuela and Brazil; Tapixaua callida from Brazil and Peru; Abapeba hoeferi, A. rioclaro, A. taruma, Corinna ducke, C. colombo, C. mourai, C. recurva and Parachemmis manauara from Brazil; Creugas lisei from Brazil, Argentina and Uruguay. Twenty seven species are redescribed. Fifty eight new combinations are presented: from Chemmis, Septentrinna steckleri (Gertsch); from Corinna, Abapeba abalosi (Mello-Leitão), A. cleonei (Petrunkevitch), A. echinus (Simon), A. grassima (Chickering), A. guanicae (Petrunkevitch), A. lacertosa (Simon), A. luctuosa (F. O. Pickard-Cambridge), A. lugubris (Schenkel), A. pennata (Caporiacco), A. kochi (Petrunkevitch), A. saga (F. O. Pickard-Cambridge), A. wheeleri (Petrunkevitch), Creugas annamae (Gertsch & Davis), C. apophysarius (Caporiacco), C. bajulus (Gertsch), C. bellator (L. Koch), C. bicuspis (F.O. Pickard-Cambridge), C. epicureanus (Chamberlin), C. falculus (F. O. Pickard-Cambridge), C. mucronatus (F. O. Pickard-Cambridge), C. navus (F. O. Pickard-Cambridge), C. nigricans (C. L. Koch), C. plumatus (L. Koch), C. praeceps (F. O. Pickard-Cambridge), C. silvaticus (Chickering), C. uncatus (F. O. Pickard-Cambridge), Erendira luteomaculatta (Petrunkevitch), E. pallidoguttata (Simon), E. subsignata (Simon), Falconina albomaculosa (Schmidt), F. crassipalpis (Chickering), F. gracilis (Keyserling), Megalostrata raptrix (L. Koch), Paradiestus egregius (Simon), P. giganteus (Karsch), P. penicillatus (Mello-Leitão), P. vitiosus (Keyserling), Septentrinna bicalcarata (Simon), S. paradoxa (F. O. Pickard-Cambridge), S. retusa (F. O. Pickard-Cambridge), Simonestus pseudobulbolus (Caporiacco), S. robustus (Chickering), S. semiluna (F.O. Pickard-Cambridge), Stethorrhagus maculatus (L. Koch) and Xeropigo smedigari (Caporiacco); from Diestus, Corinna alticeps (Keyserling), C. kochi (Simon), Simonestus occidentalis (Schenkel), S. separatus (Schmidt) and S. validus (Simon); from Lausus, Corinna grandis (Simon) and Abapeba sicarioides (Mello-Leitão); from Medmassa, Corinna andina (Simon) and C. venezuelica (Caporiacco); from Megalostrata, Erendira atrox (Caporiacco) and Erendira pictitorax (Caporiacco); from Parachemmis, Tupirinna trilineata (Chickering). Five combinations are restaured: Corinna aenea Simon, Creugas cinnamius Simon, Creugas gulosus Thorell, Falconina melloi (Schenkel), Paradiestus aurantiacus Mello-Leitão. Twenty five new synonymies are proposed: Diestus altifrons Mello-Leitão with Corinna nitens (Keyserling); Corinna tomentosa Simon, C. tridentina Mello-Leitão, Hypsinotus flavipes Keyserling, H. humilis Keyserling and Xeropigo scutulatus Simon with Xeropigo tridentiger (O. Pickard-Cambridge); Corinna cribosa Mello-Leitão and C. stigmatica Simon with Falconina gracilis (Keyserling); Corinna casueta Chickering with SIMONestus separatus (Schmidt); Corinna abnormis Petrunkevitch, C. antillana BRYANT, C. consobrina Simon, C. inornata Kraus, C. nervosa F. O. Pickard-Cambridge, C. wolleboeki Banks, Creugas cetratus Simon, C. senegalensis Simon and Hypsinotus gracilipes Keyserling with Creugas gulosus Thorell; Chemmis frederici Simon, Delozeugma formidabile O. Pickard-Cambridge, D. mordicans O. Pickard-Cambridge, Megalostrata sperata Kraus and M. venifica KARSCH with Megalostrata raptrix (L. Koch); Megalostrata lohmanderi Caporiacco with Erendira atrox (Caporiacco); Corinna tenubra Chickering with Parachemmis fuscus Chickering. One new name, Creugas berlandi, is erected for Corinna bellatrix Schmidt. Males of Creugas cinnamius, Corinna kochi, Methesis semirufa Simon, Paradiestus aurantiacus, Septentrinna steckleri and Xeropigo smedigari, the females of Paradiestus giganteus, Septentrinna bicalcarata and the adult female of S. steckleri are described for the first time.
Resumo:
There is accumulating evidence that invertebrates can acquire long-term protection against pathogens through immune priming. However, the range of pathogens eliciting immune priming and the specificity of the response remain unclear. Here, we tested if the exposure to a natural fungal pathogen elicited immune priming in ants. We found no evidence for immune priming in Formica selysi workers exposed to Beauveria bassiana. The initial exposure of ants to the fungus did not alter their resistance in a subsequent challenge with the same fungus. There was no sign of priming when using homologous and heterologous combinations of fungal strains for exposure and subsequent challenges at two time intervals. Hence, within the range of conditions tested, the immune response of this social insect to the fungal pathogen appears to lack memory and strain-specificity. These results show that immune priming is not ubiquitous across pathogens, hosts and conditions, possibly because of immune evasion by the pathogen or efficient social defences by the host.
Resumo:
Social organisms can surmount many ecological challenges by working collectively. An impressive example of such collective behavior occurs when ants physically link together into floating 'rafts' to escape from flooded habitat. However, raft formation may represent a social dilemma, with some positions posing greater individual risks than others. Here, we investigate the position and function of different colony members, and the costs and benefits of this functional geometry in rafts of the floodplain-dwelling ant Formica selysi. By causing groups of ants to raft in the laboratory, we observe that workers are distributed throughout the raft, queens are always in the center, and 100% of brood items are placed on the base. Through a series of experiments, we show that workers and brood are extremely resistant to submersion. Both workers and brood exhibit high survival rates after they have rafted, suggesting that occupying the base of the raft is not as costly as expected. The placement of all brood on the base of one cohesive raft confers several benefits: it preserves colony integrity, takes advantage of brood buoyancy, and increases the proportion of workers that immediately recover after rafting.
Resumo:
Understanding social evolution requires us to understand the processes regulating the number of breeders within social groups and how they partition reproduction. Queens in polygynous (multiple queens per colony) ants often seek adoption in established colonies instead of founding a new colony independently. This mode of dispersal leads to potential conflicts, as kin selection theory predicts that resident workers should favour nestmate queens over foreign queens. Here we compared the survival of foreign and resident queens as well as their relative reproductive share. We used the ant Formica exsecta to construct colonies consisting of one queen with workers related to this resident queen and introduced a foreign queen. We found that the survival of foreign queens did not differ from that of resident queens over a period of 136 days. However, the genetic analyses revealed that resident queens produced a 1.5-fold higher number of offspring than introduced queens, and had an equal or higher share in 80% of the colonies. These data indicate that some discrimination can occur against dispersing individuals and that dispersal can thus have costs in terms of direct reproduction for dispersing queens.
Resumo:
Ant queens that attempt to disperse and found new colonies independently face high mortality risks. The exposure of queens to soil entomopathogens during claustral colony founding may be particularly harmful, as founding queens lack the protection conferred by mature colonies. Here, we tested the hypotheses that founding queens (I) detect and avoid nest sites that are contaminated by fungal pathogens, and (II) tend to associate with other queens to benefit from social immunity when nest sites are contaminated. Surprisingly, in nest choice assays, young Formica selysi BONDROIT, 1918 queens had an initial preference for nest sites contaminated by two common soil entomopathogenic fungi, Beauveria bassiana and Metarhizium brunneum. Founding queens showed a similar preference for the related but non-entomopathogenic fungus Fusarium graminearum. In contrast, founding queens had no significant preference for the more distantly related nonentomopathogenic fungus Petromyces alliaceus, nor for heat-killed spores of B. bassiana. Finally, founding queens did not increase the rate of queen association in presence of B. bassiana. The surprising preference of founding queens for nest sites contaminated by live entomopathogenic fungi suggests that parasites manipulate their hosts or that the presence of specific fungi is a cue associated with suitable nesting sites.
Resumo:
Growing empirical evidence indicates that invertebrates become more resistant to a pathogen following initial exposure to a nonlethal dose; yet the generality, mechanisms, and adaptive value of such immune priming are still under debate. Because life-history theory predicts that immune priming and large investment in immunity should be more frequent in long-lived species, we here tested for immune priming and pathogen resistance in ant queens, which have extraordinarily long life span. We exposed virgin and mated queens of Lasius niger and Formica selysi to a low dose of the entomopathogenic fungus Beauveria bassiana, before challenging them with a high dose of the same pathogen. We found evidence for immune priming in naturally mated queens of L. niger. In contrast, we found no sign of priming in virgin queens of L. niger, nor in virgin or experimentally mated queens of F. selysi, which indicates that immune priming in ant queens varies according to mating status and mating conditions or species. In both ant species, mated queens showed higher pathogen resistance than virgin queens, which suggests that mating triggers an up-regulation of the immune system. Overall, mated ant queens combine high reproductive output, very long life span, and elevated investment in immune defense. Hence, ant queens are able to invest heavily in both reproduction and maintenance, which can be explained by the fact that mature queens will be protected and nourished by their worker offspring.
Resumo:
Insect societies vary greatly in social organization, yet the relative roles of ecological and genetic factors in driving this variation remain poorly understood. Identifying how social structure varies along environmental gradients can provide insights into the ecological conditions favouring alternative social organizations. Here, we investigate how queen number variation is distributed along elevation gradients within a socially polymorphic ant, the Alpine silver ant Formica selysi. We sampled low- and high-elevation populations in multiple Alpine valleys. We show that populations belonging to different drainage basins are genetically differentiated. In contrast, there is little genetic divergence between low- and high-elevation populations within the same drainage basin. Thus, elevation gradients in each of the drainage basins represent independent contrasts. Whatever the elevation, all well-sampled populations are socially polymorphic, containing both monogynous (= one queen) and polygynous (= multiple queen) colonies. However, the proportion of monogynous colonies per population increases at higher elevation, while the effective number of queens in polygynous colonies decreases, and this pattern is replicated in each drainage basin. The increased prevalence of colonies with a single queen at high elevation is correlated with summer and winter average temperature, but not with precipitation. The colder, unpredictable and patchy environment encountered at higher elevations may favour larger queens with the ability to disperse and establish incipient monogynous colonies independently, while the stable and continuous habitat in the lowlands may favour large, fast-growing polygynous colonies. By highlighting differences in the environmental conditions favouring monogynous or polygynous colonies, this study sheds light on the ecological factors influencing the distribution and maintenance of social polymorphism.
Resumo:
The ability to discriminate against competitors shapes cooperation and conflicts in all forms of social life. In insect societies, workers may detect and destroy eggs laid by other workers or by foreign queens, which can contribute to regulate reproductive conflicts among workers and queens. Variation in colony kin structure affects the magnitude of these conflicts and the diversity of cues used for discrimination, but the impact of the number of queens per colony on the ability of workers to discriminate between eggs of diverse origin has so far not been investigated. Here, we examined whether workers from the socially polymorphic ant Formica selysi distinguished eggs laid by nestmate workers from eggs laid by nestmate queens, as well as eggs laid by foreign queens from eggs laid by nestmate queens. Workers from single- and multiple-queen colonies discriminated worker-laid from queen-laid eggs, and eliminated the former. This suggests that workers collectively police each other in order to limit the colony-level costs of worker reproduction and not because of relatedness differences towards queens' and workers' sons. Workers from single-queen colonies discriminated eggs laid by foreign queens of the same social structure from eggs laid by nestmate queens. In contrast, workers from multiple-queen colonies did not make this distinction, possibly because cues on workers or eggs are more diverse. Overall, these data indicate that the ability of F. selysi workers to discriminate eggs is sufficient to restrain worker reproduction but does not permit discrimination between matrilines in multiple-queen colonies.