991 resultados para Form perception
Resumo:
This essay considers the interest shared by William Hogarth and Charles Dickens on the idea of instrumentality in the art of realism. Taking his cue from eighteenth-century epistemological philosophy, Hogarth developed an idea of beauty and realism as insisting upon the need for human subjectivity or perspective. Naïve realism was a style that troubled both Hogarth and Dickens and both men developed forms in which caricature, melodrama and exaggeration is crucial to the development of verisimilitude. Considering the progress pieces and the writings of Hogarth as a preface to the style of Dickens, I argue that Nicholas Nickleby developed an extraordinary self-reflexivity. Both Nicholas and his uncle Ralph form part of a narrative study of the implications of filtering perception through the distorting lens of the individual.
Resumo:
The present study origins from Diana Deutschs work with the octave illusion and investigates if musically trained subjects can give a more correct perception of the octave illusion if their visual senses also get stimulated in form of scores.Ten subjects, with over 20 years experience playing an instrument, participated in the investigation. The result shows that a more correct perception of the octave illusion depends on the educational level in scorereading. Four out of five subjects who valued their knowledge in scorereading as being good or very good reported that the score corresponded to what they could hear in the right ear, which is connected to the dominant hemisphere. When they were instructed to focus on both ears three of these subjects reported that the score corresponded to what they could hear in the left ear, but that they could not hear the lower tone in the right ear. As the scores for the right ear were equal for the identical soundexamples this perception could be an indication that stimuli are percieved as being complex and the interpretation is alternated to the non dominant hemisphere.
Resumo:
The essay investigates the visual element as seen by the audience and artist to be of greatest importance to a musicalperformance. The study was conducted in the form of a field work which included doing interviews with artists, surveys of the audience and interpretive observations of live performance. The fieldwork was conducted in three different environments in which I found myself on the spot and performed the various stages included in the field work. It was done to create a surface that could be used in an essay, and through that use this material to compare and analyze my results and in the end be able to answer my questions. I started from eight different factors which all could beexperienced visually on stage. The factors were light / colors, costumes, props, effects, stage presence, attitude / image, nervousness and dance / body language. Those factors would then be examined in the various musical performances and to be answered by the audience and performers which of those factors they considered to be of great importance or small importance when it comes to visual perception in a musical context. The result was a clear statement where two factors were considered to be most crucial for a musical performance, and a clear statement in which two factors were considered by the majority to be less important. The results demonstrate a common understanding what the artist and the audience thinks is important. A result that can act as a template for what an artist should think about regarding the visual elements before an performance. My theory is my assumption that the visual elements of musical performances can play an important or decisive role, an assumption that was strengthened by my empirical experiences at a concert visit. I wanted in this essay explore and give a clear picture of what it is that artists and audiences consider to be visually crucial for a musical context
Resumo:
Context and objective: Records of contact with mercury (Hg) exist for more than 3500 years and several problems related to the use of this element can be noticed. Considering inexistence of current reports about it, quality of life perception evaluation was studied in people chronically intoxicated by mercury in an industrial environment. Design and setting: This is a cross-sectional descriptive observational study. Information from 47 urban-industrial workers from lamps manufacturing in São Paulo, clinically diagnosed as intoxicated by mercury and currently followed by the Occupational Health Service of Faculdade de Medicine da Universidade de São Paulo, with average age of 41.7 years old, was considered. Methods: SF36 questionnaire application was performed, with inferences tested by χ-square proof, by Spearman linear correlation and Mann-Whitney non-parametric test, adopting p < 0.05 as significant level. Results: In the eight domains, observed medians are 40% for physical functioning; 0 for physical function; 30% for body pain; 30% for general health; 22.2% for vitality; 50% for social functioning; 0 for emotional role and 36% for mental health. Correlation between age and SF36 domains does not reveal statistical significance, except for physical functioning, indicating that lower scores presented by older people in this domain are not followed by changes on other ones. Conclusions: Values obtained in people chronically intoxicated by mercury are actually lower, in the motor and mental scope components. Some instruments domains are higher for men than for women. Older ages are inversely associated to good performance in physical function domain. © Copyright Moreira Jr. Editora. Todos os direitos reservados.
Resumo:
OBJECTIVE: Poor sleep quality is one of the factors that adversely affects patient quality of life after kidney transplantation, and sleep disorders represent a significant cardiovascular risk factor. The objective of this study was to investigate the prevalence of changes in sleep quality and their outcomes in kidney transplant recipients and analyze the variables affecting sleep quality in the first years after renal transplantation. METHODS: Kidney transplant recipients were evaluated at two time points after a successful transplantation: between three and six months (Phase 1) and between 12 and 15 months (Phase 2). The following tools were used for assessment: the Pittsburgh Sleep Quality Index; the quality of life questionnaire Short-Form-36; the Hospital Anxiety and Depression scale; the Karnofsky scale; and assessments of social and demographic data. The prevalence of poor sleep was 36.7% in Phase 1 and 38.3% in Phase 2 of the study. RESULTS: There were no significant differences between patients with and without changes in sleep quality between the two phases. We found no changes in sleep patterns throughout the study. Both the physical and mental health scores worsened from Phase 1 to Phase 2. CONCLUSION: Sleep quality in kidney transplant recipients did not change during the first year after a successful renal transplantation.
Resumo:
We used fMRI to investigate the neuronal correlates of encoding and recognizing heard and imagined melodies. Ten participants were shown lyrics of familiar verbal tunes; they either heard the tune along with the lyrics, or they had to imagine it. In a subsequent surprise recognition test, they had to identify the titles of tunes that they had heard or imagined earlier. The functional data showed substantial overlap during melody perception and imagery, including secondary auditory areas. During imagery compared with perception, an extended network including pFC, SMA, intraparietal sulcus, and cerebellum showed increased activity, in line with the increased processing demands of imagery. Functional connectivity of anterior right temporal cortex with frontal areas was increased during imagery compared with perception, indicating that these areas form an imagery-related network. Activity in right superior temporal gyrus and pFC was correlated with the subjective rating of imagery vividness. Similar to the encoding phase, the recognition task recruited overlapping areas, including inferior frontal cortex associated with memory retrieval, as well as left middle temporal gyrus. The results present new evidence for the cortical network underlying goal-directed auditory imagery, with a prominent role of the right pFC both for the subjective impression of imagery vividness and for on-line mental monitoring of imagery-related activity in auditory areas.
Resumo:
The two modes most widely used in Western music today convey opposite moods—a distinction that nonmusicians and even young children are able to make. However, the current studies provide evidence that, despite a strong link between mode and affect, mode perception is problematic. Nonmusicians found mode discrimination to be harder than discrimination of other melodic features, and they were not able to accurately classify major and minor melodies with these labels. Although nonmusicians were able to classify major and minor melodies using affective labels, they performed at chance in mode discrimination. Training, in the form of short lessons given to nonmusicians and the natural musical experience of musicians, improved performance, but not to ceiling levels. Tunes with high note density were classified as major, and tunes with low note density as minor, even though these features were actually unrelated in the experimental material. Although these findings provide support for the importance of mode in the perception of emotion, they clearly indicate that these mode perceptions are inaccurate, even in trained individuals, without the assistance of affective labeling.
Resumo:
OBJECTIVE Visuoperceptual deficits are common in dementia with Lewy bodies (DLB) and Alzheimer disease (AD). Testing visuoperception in dementia is complicated by decline in other cognitive domains and extrapyramidal features. To overcome these issues, we developed a computerized test, the Newcastle visuoperception battery (NEVIP), which is independent of motor function and has minimal cognitive load.We aimed to test its utility to identify visuoperceptual deficits in people with dementia. PARTICIPANTS AND MEASUREMENTS We recruited 28 AD and 26 DLB participants with 35 comparison participants of similar age and education. The NEVIP was used to test angle, color, and form discrimination along with motion perception to obtain a composite visuoperception score. RESULTS Those with DLB performed significantly worse than AD participants on the composite visuoperception score (Mann-Whitney U = 142, p = 0.01). Visuoperceptual deficits (defined as 2 SD below the performance of comparisons) were present in 71% of the DLB group and 40% of the AD group. Performance was not significantly correlated with motor impairment, but was significantly related to global cognitive impairment in DLB (rs = -0.689, p <0.001), but not in AD. CONCLUSION Visuoperceptual deficits can be detected in both DLB and AD participants using the NEVIP, with the DLB group performing significantly worse than AD. Visuoperception scores obtained by the NEVIP are independent of participant motor deficits and participants are able to comprehend and perform the tasks.
Resumo:
Gender-fair language, including women and men, such as word pairs has a substantial impact on the mental representation, as a large body of studies have shown. When using exclusively the masculine form as a generic, women are mentally significantly less represented than men. Word pairs, however, lead to a higher cognitive inclusion of women. Surprisingly little research has been conducted to understand how the perception of professional groups is affected by gender-fair language. Providing evidence from an Italian-Austrian cross-cultural study with over 400 participants, we argue that gender-fair language impacts the perception of professional groups, in terms of perceived gender-typicality, number of women and men assumed for a profession, social status and average income. Results hint at a pervasive pay-off: on the one hand, gender-fair language seems to boost the mental representations in favor of women and professions are perceived as being rather gender-neutral. On the other hand professional groups are assigned lower salary and social status with word pairs. Implications of results are discussed.
Resumo:
The purpose of this study was to determine the perception and knowledge of targeted ultrasound in women who screen positive for Down syndrome in the first or second trimester, and to assess the perceived detection rate of Down syndrome by targeted ultrasound in this population. While several studies have reported patient perceptions’ of routine ultrasound, no study has specifically examined knowledge regarding the targeted ultrasound and its role in detecting Down syndrome. A targeted ultrasound is a special ultrasound during the second trimester offered to women who may be at a higher-than-average risk of having a baby with some type of birth defect or complication. The purpose of the ultrasound is to evaluate the overall growth and development of the baby as well as screen for birth defects and genetic conditions. Women under the age of 35 referred for an abnormal first or second trimester maternal serum screen to several Houston area clinics were asked to complete a questionnaire to obtain demographic and ultrasound knowledge information as well as assess perceived detection rate of Down syndrome by ultrasound. Seventy-seven women completed the questionnaire and participated in the study. Our findings revealed that women have limited background knowledge about the targeted ultrasound and its role in detecting Down syndrome. These findings are consistent with other studies that have reported a lack of understanding about the purpose of ultrasound examinations. One factor that seems to increase background knowledge about the targeted ultrasound is individuals having a higher level of education. However, most participants regardless of race, education, income, and exposure to targeted ultrasound information did not know the capabilities of a targeted ultrasound. This study confirmed women lack background knowledge about the targeted ultrasound and do not know enough about the technology to form a perception regarding its ability to detect Down syndrome. Additional studies to identify appropriate education techniques are necessary to determine how to best inform our patient population about targeted ultrasound.
Resumo:
The factorial validity of the SF-36 was evaluated using confirmatory factor analysis (CFA) methods, structural equation modeling (SEM), and multigroup structural equation modeling (MSEM). First, the measurement and structural model of the hypothesized SF-36 was explicated. Second, the model was tested for the validity of a second-order factorial structure, upon evidence of model misfit, determined the best-fitting model, and tested the validity of the best-fitting model on a second random sample from the same population. Third, the best-fitting model was tested for invariance of the factorial structure across race, age, and educational subgroups using MSEM.^ The findings support the second-order factorial structure of the SF-36 as proposed by Ware and Sherbourne (1992). However, the results suggest that: (a) Mental Health and Physical Health covary; (b) general mental health cross-loads onto Physical Health; (c) general health perception loads onto Mental Health instead of Physical Health; (d) many of the error terms are correlated; and (e) the physical function scale is not reliable across these two samples. This hierarchical factor pattern was replicated across both samples of health care workers, suggesting that the post hoc model fitting was not data specific. Subgroup analysis suggests that the physical function scale is not reliable across the "age" or "education" subgroups and that the general mental health scale path from Mental Health is not reliable across the "white/nonwhite" or "education" subgroups.^ The importance of this study is in the use of SEM and MSEM in evaluating sample data from the use of the SF-36. These methods are uniquely suited to the analysis of latent variable structures and are widely used in other fields. The use of latent variable models for self reported outcome measures has become widespread, and should now be applied to medical outcomes research. Invariance testing is superior to mean scores or summary scores when evaluating differences between groups. From a practical, as well as, psychometric perspective, it seems imperative that construct validity research related to the SF-36 establish whether this same hierarchical structure and invariance holds for other populations.^ This project is presented as three articles to be submitted for publication. ^
Resumo:
La robótica ha evolucionado exponencialmente en las últimas décadas, permitiendo a los sistemas actuales realizar tareas sumamente complejas con gran precisión, fiabilidad y velocidad. Sin embargo, este desarrollo ha estado asociado a un mayor grado de especialización y particularización de las tecnologías implicadas, siendo estas muy eficientes en situaciones concretas y controladas, pero incapaces en entornos cambiantes, dinámicos y desestructurados. Por eso, el desarrollo de la robótica debe pasar por dotar a los sistemas de capacidad de adaptación a las circunstancias, de entendedimiento sobre los cambios observados y de flexibilidad a la hora de interactuar con el entorno. Estas son las caracteristicas propias de la interacción del ser humano con su entorno, las que le permiten sobrevivir y las que pueden proporcionar a un sistema inteligencia y capacidad suficientes para desenvolverse en un entorno real de forma autónoma e independiente. Esta adaptabilidad es especialmente importante en el manejo de riesgos e incetidumbres, puesto que es el mecanismo que permite contextualizar y evaluar las amenazas para proporcionar una respuesta adecuada. Así, por ejemplo, cuando una persona se mueve e interactua con su entorno, no evalúa los obstáculos en función de su posición, velocidad o dinámica (como hacen los sistemas robóticos tradicionales), sino mediante la estimación del riesgo potencial que estos elementos suponen para la persona. Esta evaluación se consigue combinando dos procesos psicofísicos del ser humano: por un lado, la percepción humana analiza los elementos relevantes del entorno, tratando de entender su naturaleza a partir de patrones de comportamiento, propiedades asociadas u otros rasgos distintivos. Por otro lado, como segundo nivel de evaluación, el entendimiento de esta naturaleza permite al ser humano conocer/estimar la relación de los elementos con él mismo, así como sus implicaciones en cuanto a nivel de riesgo se refiere. El establecimiento de estas relaciones semánticas -llamado cognición- es la única forma de definir el nivel de riesgo de manera absoluta y de generar una respuesta adecuada al mismo. No necesariamente proporcional, sino coherente con el riesgo al que se enfrenta. La investigación que presenta esta tesis describe el trabajo realizado para trasladar esta metodología de análisis y funcionamiento a la robótica. Este se ha centrado especialmente en la nevegación de los robots aéreos, diseñando e implementado procedimientos de inspiración humana para garantizar la seguridad de la misma. Para ello se han estudiado y evaluado los mecanismos de percepción, cognición y reacción humanas en relación al manejo de riesgos. También se ha analizado como los estímulos son capturados, procesados y transformados por condicionantes psicológicos, sociológicos y antropológicos de los seres humanos. Finalmente, también se ha analizado como estos factores motivan y descandenan las reacciones humanas frente a los peligros. Como resultado de este estudio, todos estos procesos, comportamientos y condicionantes de la conducta humana se han reproducido en un framework que se ha estructurado basadandose en factores análogos. Este emplea el conocimiento obtenido experimentalmente en forma de algoritmos, técnicas y estrategias, emulando el comportamiento humano en las mismas circunstancias. Diseñado, implementeado y validado tanto en simulación como con datos reales, este framework propone una manera innovadora -tanto en metodología como en procedimiento- de entender y reaccionar frente a las amenazas potenciales de una misión robótica. ABSTRACT Robotics has undergone a great revolution in the last decades. Nowadays this technology is able to perform really complex tasks with a high degree of accuracy and speed, however this is only true in precisely defined situations with fully controlled variables. Since the real world is dynamic, changing and unstructured, flexible and non context-dependent systems are required. The ability to understand situations, acknowledge changes and balance reactions is required by robots to successfully interact with their surroundings in a fully autonomous fashion. In fact, it is those very processes that define human interactions with the environment. Social relationships, driving or risk/incertitude management... in all these activities and systems, context understanding and adaptability are what allow human beings to survive: contrarily to the traditional robotics, people do not evaluate obstacles according to their position but according to the potential risk their presence imply. In this sense, human perception looks for information which goes beyond location, speed and dynamics (the usual data used in traditional obstacle avoidance systems). Specific features in the behaviour of a particular element allows the understanding of that element’s nature and therefore the comprehension of the risk posed by it. This process defines the second main difference between traditional obstacle avoidance systems and human behaviour: the ability to understand a situation/scenario allows to get to know the implications of the elements and their relationship with the observer. Establishing these semantic relationships -named cognition- is the only way to estimate the actual danger level of an element. Furthermore, only the application of this knowledge allows the generation of coherent, suitable and adjusted responses to deal with any risk faced. The research presented in this thesis summarizes the work done towards translating these human cognitive/reasoning procedures to the field of robotics. More specifically, the work done has been focused on employing human-based methodologies to enable aerial robots to navigate safely. To this effect, human perception, cognition and reaction processes concerning risk management have been experimentally studied; as well as the acquisition and processing of stimuli. How psychological, sociological and anthropological factors modify, balance and give shape to those stimuli has been researched. And finally, the way in which these factors motivate the human behaviour according to different mindsets and priorities has been established. This associative workflow has been reproduced by establishing an equivalent structure and defining similar factors and sources. Besides, all the knowledge obtained experimentally has been applied in the form of algorithms, techniques and strategies which emulate the analogous human behaviours. As a result, a framework capable of understanding and reacting in response to stimuli has been implemented and validated.
Resumo:
The human visual system is able to effortlessly integrate local features to form our rich perception of patterns, despite the fact that visual information is discretely sampled by the retina and cortex. By using a novel perturbation technique, we show that the mechanisms by which features are integrated into coherent percepts are scale-invariant and nonlinear (phase and contrast polarity independent). They appear to operate by assigning position labels or “place tags” to each feature. Specifically, in the first series of experiments, we show that the positional tolerance of these place tags in foveal, and peripheral vision is about half the separation of the features, suggesting that the neural mechanisms that bind features into forms are quite robust to topographical jitter. In the second series of experiment, we asked how many stimulus samples are required for pattern identification by human and ideal observers. In human foveal vision, only about half the features are needed for reliable pattern interpolation. In this regard, human vision is quite efficient (ratio of ideal to real ≈ 0.75). Peripheral vision, on the other hand is rather inefficient, requiring more features, suggesting that the stimulus may be relatively underrepresented at the stage of feature integration.
Resumo:
Two and a half millennia ago Pythagoras initiated the scientific study of the pitch of sounds; yet our understanding of the mechanisms of pitch perception remains incomplete. Physical models of pitch perception try to explain from elementary principles why certain physical characteristics of the stimulus lead to particular pitch sensations. There are two broad categories of pitch-perception models: place or spectral models consider that pitch is mainly related to the Fourier spectrum of the stimulus, whereas for periodicity or temporal models its characteristics in the time domain are more important. Current models from either class are usually computationally intensive, implementing a series of steps more or less supported by auditory physiology. However, the brain has to analyze and react in real time to an enormous amount of information from the ear and other senses. How is all this information efficiently represented and processed in the nervous system? A proposal of nonlinear and complex systems research is that dynamical attractors may form the basis of neural information processing. Because the auditory system is a complex and highly nonlinear dynamical system, it is natural to suppose that dynamical attractors may carry perceptual and functional meaning. Here we show that this idea, scarcely developed in current pitch models, can be successfully applied to pitch perception.
Resumo:
The primate visual motion system performs numerous functions essential for survival in a dynamic visual world. Prominent among these functions is the ability to recover and represent the trajectories of objects in a form that facilitates behavioral responses to those movements. The first step toward this goal, which consists of detecting the displacement of retinal image features, has been studied for many years in both psychophysical and neurobiological experiments. Evidence indicates that achievement of this step is computationally straightforward and occurs at the earliest cortical stage. The second step involves the selective integration of retinal motion signals according to the object of origin. Realization of this step is computationally demanding, as the solution is formally underconstrained. It must rely--by definition--upon utilization of retinal cues that are indicative of the spatial relationships within and between objects in the visual scene. Psychophysical experiments have documented this dependence and suggested mechanisms by which it may be achieved. Neurophysiological experiments have provided evidence for a neural substrate that may underlie this selective motion signal integration. Together they paint a coherent portrait of the means by which retinal image motion gives rise to our perceptual experience of moving objects.