121 resultados para Foreland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the deglacial sequence of the largest end moraine system of the Italian Alps, we focused on the latest culmination of the Last Glacial Maximum, before a sudden downwasting of the piedmontane lobe occupying the modern lake basin. We obtained a robust chronology for this culmination and for the subsequent deglacial history by cross-radiocarbon dating of a proximal fluvioglacial plain and of a deglacial continuous lake sedimentation. We used reworked dinocysts to locate sources of glacial abrasion and to mark the input of glacial meltwater until depletion. The palynological record from postglacial lake sediments provided the first vegetation chronosequence directly reacting to the early Lateglacial withdrawal so far documented in the Alps.

Glacier collapse occurred soon after 17.46 +/- 0.2 ka cal BP, which is, the Manerba advance culmination. Basin deglaciation of several overdeepened foreland piedmont lakes on southern and northern sides of the Alps appears to be synchronous at millennial scale and near-synchronous with large-scale glacial retreat at global scale. The pioneering succession shows a first afforestation step at a median modeled age of 64 years after deglaciation, while rapid tree growth lagged 7 centuries. Between 16.4 +/- 0.16 and 15.5 +/- 0.16 ka cal BP, a regressive phase interrupted forest growth marking a Lateglacial phase of continental-dry climate predating GI-1. This event, spanning the most advanced phases of North-Atlantic H1, is consistently radiocarbon-framed at three deglacial lake records so far investigated on the Italian side of the Alps. Relationships with the Gschnitz stadial from the Alpine record of Lateglacial advances are discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hosted in a wide depression within the Berici Hills (Venetian Plain), outside the maximum extent reached by LGM glaciers, Lake Fimon preserves an almost continuous archive of landscape and climate changes from the penultimate glacial maximum onwards. The stratigraphic succession deposited at the lake bottom has been investigated in three deep cores by means of pollen analysis, petrographic composition, magnetic susceptibility, LOI, and geochronology. Tephra layers have been identified and are currently under study.
Pollen data provide the first continuous vegetation record in northern Italy for the last 150 ky. Terrestrial vegetation varied from interglacial warm-temperate broad leaved to oceanic mixed forests, from boreal conifer forests to open forest-steppes of colder climate. Phases of major forest expansion and reduction have been correlated to isotopic events described in ice (NGRIP), stalagmite (Antro del Corchia) and marine records. Persistent afforestation recorded in northern Italy even during cold phases of the full pleniglacial is consistent with mesoscale paleoclimate simulations suggesting that a sharp rainfall gradient across the Alps enabled the survival of woody species in the southern alpine foreland.
Integrating litho- and biostratigraphical data, we identified sedimentation regìmes, accumulation rates, sediment sources and supply both for the Lake Fimon cores and the adjacent Venetian Plain, allowing a direct comparison with major glacial advances in the Alpine area, deglaciation pulses, and glacio-eustatic displacements of the northern Adriatic shoreline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

White micas in carbonate-rich tectonites and a few other rock types of large thrusts in the Swiss Helvetic fold-and-thrust belt have been analyzed by Ar-40/Ar-39 and Rb/Sr techniques to better constrain the timing of Alpine deformation for this region. Incremental Ar-40/Ar-39 heating experiments of 25 weakly metamorphosed (anchizone to low greenschist) samples yield plateau and staircase spectra. We interpret most of the staircase release spectra result from variable mixtures of syntectonic (neoformed) and detrital micas. The range in dates obtained within individual spectra depends primarily on the duration of mica nucleation and growth, and relative proportions of neoformed and detrital mica. Rb/Sr analyses of 12 samples yield dates of ca. 10-39 Ma (excluding one anomalously young sample). These dates are slightly younger than the Ar-40/Ar-39 total gas dates obtained for the same samples. The Rb/ Sr dates were calculated using initial Sr-87/Sr-86 ratios obtained from the carbonate-dominated host rocks, which are higher than normal Mesozoic carbonate values due to exchange with fluids of higher Sr-87/Sr-86 ratios (and lower O-18/O-16 ratios). Model dates calculated using Sr-87/Sr-86 values typical of Mesozoic marine carbonates more closely approximate the Ar-40/Ar-39 total gas dates for most of the samples. The similarities of Rb/Sr and Ar-40/Ar-39 total gas dates are consistent with limited amounts of detrital mica in the samples. The delta(18)O values range from 24-15%. (VSMOW) for 2-6 mum micas and 27-16parts per thousand for the carbonate host rocks. The carbonate values are significantly lower than their protolith values due to localized fluid-rock interaction and fluid flow along most thrust surfaces. Although most calcite-mica pairs are not in oxygen isotope equilibrium at temperatures of ca. 200-400 degreesC, their isotopic fractionations are indicative of either 1) partial exchange between the minerals and a common external fluid, or 2) growth or isotopic exchange of the mica with the carbonate after the carbonate had isotopically exchanged with an external fluid. The geological significance of these results is not easily or uniquely determined, and exemplifies the difficulties inherent in dating very fine-grained micas of highly deformed tectonites in low-grade metamorphic terranes. Two generalizations can be made regarding the dates obtained from the Helvetic thrusts: 1) samples from the two highest thrusts (Mt. Gond and Sublage) have all of their Ar-40/Ar-39 steps above 20 Ma, and 2) most samples from the deepest Helvetic thrusts have steps (often accounting for more than 80% of Ar-39 release) between 15 and 25 Ma. These dates are consistent with the order of thrusting in the foreland-imbricating system and increase proportions of neoformed to detrital mica in the more metamorphosed hinterland and deeply buried portions of the nappe pile. Individual thrusts accommodated the majority of their displacement during their initial incorporation into the foreland-imbricating system, and some thrusts remained active or were reactivated down to 15 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

North Amerlc8 W8S inundated by fJ major eplcontlnental sea during ihe C:retaceo.us Period. The sOljihw6rd transgression of th.e northern Boreal See along the ~\festern Interior Seaway resulted in a meetlng with the northward edv6nclng waters from the GUlf of Mexico (Obradovich and Cobban, 1975). Th1s link was 1n eXlstence by late Albien time and 6llowed for the comm1ngl1ng of the prol1ferous Arctic and Gulf rnar1ne faunas (F1g. 1). By early Campanlan time, there was a widening of B6ffln Bay wlth a slrnult8neous subsidence 1n the Arct1c Archlpelago and Sverdrup 6as1n (W11liam and Stelck, 1975). Williams and Burk (1964) found 6 break 1n the marines sedlmentatlon in the f1anltoba area, suggesting Bland corlnectlon from the Dlstrlct of Keewatln through eastern M6fl1toba to the lake Sl~perlor reglon, lmplying that the only dlrect connection between the Interlor Sea with Baffln Bay, was yia the Arct1c. This hiatus was also documented by Meek and Hayden (1861) ln the United states between the Niobrara and Pierre Format1ons. Jeletzky (1971) suggested that the retreat of the sea towards the east was by a serles of strong pulses resultlng in the regression of the Campanlan and M66str1chtlan seas. During ttle Cretaceous1 the r1s1ng Corl1111era caused the western shoreline of the Interlor Sea to migrate eastwards and the Cordillera'l detritus produced deltaic cornplexes from the Mackenzie Valley to Ne\N Mexlcoo The foreland basin was continually subslding and thls down\",arplng aided in the eastward m1gration of the western shorel1ne. Thls also lndicates that trle water 'tIes becom1ng deeper in the central Plains sect10n of the Seaway (Fig. 2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The indigenous vegetation surrounding the river oases on the southern rim of the Taklamakan Desert has drastically diminished due to overexploitation as a source of fodder, timber and fuel for the human population. The change in the spatial extent of landscape forms and vegetation types around the Qira oasis was analyzed by comparing SPOT satellite images from 1998 with aerial photographs from 1956. The analysis was supplemented by field surveys in 1999 and 2000. The study is part of a joint Chinese-European project with the aim of assessing the current state of the foreland vegetation, of gathering information on the regeneration potential and of suggesting procedures for a sustainable management. With 33 mm of annual precipitation, plants can only grow if they have access to groundwater, lakes or rivers. Most of the available water comes into the desert via rivers in the form of seasonal flooding events resulting from snow melt in the Kun Lun Mountains. This water is captured in canal systems and used for irrigation of arable fields. Among the eight herbaceous and woody vegetation types and the type of open sand without any plant life that were mapped in 2000 in the oasis foreland, only the latter, the oasis border between cultivated land and open Populus euphratica forests and Tamarix ramosissima-Phragmites australis riverbed vegetation could be clearly identified on the photographs from 1956. The comparison of the images revealed that the oasis increased in area between 1956 and 2000. Shifting sand was successfully combated near to the oasis borders but increased in extent at the outward border of the foreland vegetation. In contrast to expectations, the area covered with Populus trees was smaller in 1956 than today due to some new forests in the north of the oasis that have grown up since 1977. Subfossil wood and leaf remnants of Populus euphratica that were found in many places in the foreland must have originated from forests destroyed before 1956. In the last 50 years, the main Qira River has shifted its bed significantly northward and developed a new furcation with a large new bed in 1986. The natural river dynamics are not only an important factor in forming the oasis’ landscape but also in providing the only possible regeneration sites for all occurring plant species. The conclusion of the study is that the oasis landscape has changed considerably in the last 50 years due to natural floodings and to vegetation degradation by human overexploitation. The trend towards decreasing width of the indigenous vegetation belt resulting from the advancing desert and the expansion of arable land is particularly alarming because a decrease in its protective function against shifting sand can be expected in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>Estimates of effective elastic thickness (T(e)) for the western portion of the South American Plate using, independently, forward flexural modelling and coherence analysis, suggest different thermomechanical properties for the same continental lithosphere. We present a review of these T(e) estimates and carry out a critical reappraisal using a common methodology of 3-D finite element method to solve a differential equation for the bending of a thin elastic plate. The finite element flexural model incorporates lateral variations of T(e) and the Andes topography as the load. Three T(e) maps for the entire Andes were analysed: Stewart & Watts (1997), Tassara et al. (2007) and Perez-Gussinye et al. (2007). The predicted flexural deformation obtained for each T(e) map was compared with the depth to the base of the foreland basin sequence. Likewise, the gravity effect of flexurally induced crust-mantle deformation was compared with the observed Bouguer gravity. T(e) estimates using forward flexural modelling by Stewart & Watts (1997) better predict the geological and gravity data for most of the Andean system, particularly in the Central Andes, where T(e) ranges from greater than 70 km in the sub-Andes to less than 15 km under the Andes Cordillera. The misfit between the calculated and observed foreland basin subsidence and the gravity anomaly for the Maranon basin in Peru and the Bermejo basin in Argentina, regardless of the assumed T(e) map, may be due to a dynamic topography component associated with the shallow subduction of the Nazca Plate beneath the Andes at these latitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biogeography of the Glandulocaudinae ( former Glandulocaudini) is reviewed. The major pattern of diversification presented by this group of freshwater fishes can be clearly associated to the main aspects of the tectonic evolution of the southern portion of the Cis-Andean South American Platform. The phylogenetic relationships within the group suggest that the clade represented by Lophiobrycon is the sister-group of the more derived clade represented by the genus Glandulocauda and Mimagoniates. Lophiobrycon and Glandulocauda occur in areas of the ancient crystalline shield of southeastern Brazil and their present allopatric distribution is probably due to relict survival and tectonic vicariant events. Populations of Glandulocauda melanogenys are found in contiguous drainages in presently isolated upper parts of the Tiete, Guaratuba, Itatinga, and Ribeira de Iguape basins and this pattern of distribution is probably the result of river capture caused by tectonic processes that affected a large area in eastern and southeastern Brazil. The species of Mimagoniates are predominantly distributed along the eastern and southeastern coastal areas, but M. microlepis is additionally found in the rio Iguacu and Tibagi basins. Mimagoniates barberi occurs in both SW margin of the upper rio Parana basin and the lower Paraguay and Mimagoniates sp. occurs in the upper Paraguay river basin. Tectonic activations of the Continental Rift of Southeastern Brazil along the eastern margin of the Upper Parana basin promoted population fragmentation responsible of the present day distribution presented by Glandulocauda melanogenys. We hypothesize that occurrence of Mimagoniates along the lowland area around the Parana basin was due to a single or a multiple fragmentation of populations along the W-SW border of the upper Parana Basin, probably due to the major tectonic origin of the Chaco-Pantanal wetland foreland basins since the Miocene as well as Cenozoic tectonic activity along the borders of the upper Parana basin, such as in the eastern Paraguay, in the Asuncion Rift. Distributional pattern of Mimagoniates suggests that its initial diversification may be related to the tectonic evolution of the Chaco-Pantanal foreland basin system and a minimum age of 2.5 M.Y are proposed for this monophyletic group. Previous hypotheses on sea level fluctuations of the late Quaternary as being the main causal mechanism promoting cladogenesis and speciation of the group are critically reviewed. Phylogeographic studies based on molecular data indicate significant differences among the isolated populations of M. microlepis. These findings suggest that a much longer period of time and a paleogeographic landscape configuration of the Brazilian southeastern coastal region explain the present observed phylogenetic and biogeographic patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present four SHRIMP U-Pb zircon ages for the Choiyoi igneous province from the San Rafael Block, central-western Argentina. Dated samples come from the Yacimiento Los Reyunos Formation (281.4 +/- 2.5 Ma) of the Cochico Group (Lower Choiyoi section: andesitic breccias, dacitic to rhyolitic ignimbrites and continental conglomerates). Agua de los Burros Formation (264.8 +/- 2.3 Ma and 264.5 +/- 3.0 Ma) and Cerro Carrizalito Formation (251.9 +/- 2.7 Ma Upper Choiyoi section: rhyolitic ignimbrites and pyroclastic flows) spanning the entire Permian succession of the Choiyoi igneous province. A single ziron from the El Imperial Formation, that is overlain unconformably by the Choiyoi succession, yielded an early Permian age (297.2 +/- 5.3 Ma). while the main detrital zircon population indicated an Ordovician age (453.7 +/- 8.1 Ma). The new data establishes a more precise Permian age (Artinskian-Lopingian) for the section studied spanning 30 Ma of volcanic activity. Volcanological observations for the Choiyoi succession support the occurrence of explosive eruptions of plinian to ultraplinian magnitudes, capable of injecting enormous volumes of tephra in the troposphere-stratosphere. The new SHRIMP ages indicate contemporaneity between the Choyoi succession and the upper part of the Parana Basin late Paleozoic section, from the Irad up to the Rio do Rasto formations, encompassing about 24 Ma. Geochemical data show a general congruence in compositional and tectonic settings between the volcanics and Parana Basin Permian ash fall derived layers of bentonites. Thickness and granulometry of ash fall layers broadly fit into the depletion curve versus distance from the remote source vent of ultraplinian eruptions. Thus, we consider that the Choiyoi igneous province was the source of ash fall deposits in the upper Permian section of the Parana Basin. Data presented here allow a more consistent correlation between tectono-volcanic Permian events along the paleo-Pacific margin of southwestern Gondwana and the geological evolution of neighboring Paleozoic foreland basins in South America and Africa. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The South-American continent is constituted of three major geologic-geotectonic entities the homonym platform (consolidated at the end of the Cambrian) the Andean chain (essentially Meso-Cenozoic) and the Patagonian terrains affected by tectonism and magmatism through almost all of the Phanerozoic The platform is constituted by a series of cratonic nuclei (pre-Tonian fragments of the Rodinia fission) surrounded by a complex fabric of Neoproterozoic structural provinces Two major groups of orogenic processes (plate interaction cycles) constitute the evolution of these provinces the older occurred in the Tonian (smaller in area) and the younger Brasiliano that is present in all provinces The Tonian cycles (pre-Rodinia fission?) are still being sorted out and many questions still need to be answered The Brasiliano orogenic collage events (post-Rodinia fission?) developed in three main stages in part coeval from a province to another and are 650-600 580-560 and 540-500 Ma respectively (the late event reaching the Ordovician) The first group of orogenies is recorded in practically all provinces The third group is restricted to part of the Mantiqueira Province (southeast of the platform Buzios Orogeny) and present in the Pampean province (SW of the platform) For all these groups of orogenic events there are considerable records of rock assemblages related to processes of convergent plate interaction opening accretion collision and further extrusion There is a good correlation between the geologic and geotectonic data and geochemical and isotopic data The late tectonic processes (post-orogenic magmatism foreland basins etc) of the first two groups compete in time in distinct spaces with the peak of orogenic processes in the third group The introduction of the SHRIMP U-Pb methodology was fundamental to separate the Tonian and post-Tonian orogenic groups and their respective divisions in time and space Thus there are still many open points/problems which lead to expectations of addressing these issues in the near future with the more Intense use of this methodology (C) 2010 Elsevier B V All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A paleomagnetic study was carried out on the Late Jurassic Sarmiento Ophiolitic Complex (SOC) exposed in the Magallanes fold and thrust belt in the southern Patagonian Andes (southern Chile). This complex, mainly consisting of a thick succession of pillow-lavas, sheeted dikes and gabbros, is a seafloor remnant of the Late Jurassic to Early Cretaceous Rocas Verdes basin that developed along the south-western margin of South America. Stepwise thermal and alternating field demagnetization permitted the isolation of a post-folding characteristic remanence, apparently carried by fine grain (SD?) magnetite, both in the pillow-lavas and dikes. The mean ""in situ"" direction for the SOC is Dec: 286.9 degrees, Inc: -58.5 degrees, alpha-95: 6.9 degrees, N: 11 (sites). Rock magnetic properties, petrography and whole-rock K-Ar ages in the same rocks are interpreted as evidence of correlation between remanence acquisition and a greenschist facies metamorphic overprint that must have occurred during latest stages or after closure and tectonic inversion of the basin in the Late Cretaceous. The mean remanence direction is anomalous relative to the expected Late Cretaceous direction from stable South America. Particularly, a declination anomaly over 50 degrees is suggestively similar to paleomagnetically interpreted counter clockwise rotations found in thrust slices of the Jurassic El Quemado Fm. located over 100 km north of the study area in Argentina. Nevertheless, a significant ccw rotation of the whole SOC is difficult to reconcile with geologic evidence and paleogeographic models that suggest a narrow back-arc basin sub-parallel to the continental margin. A rigid-body 30 degrees westward tilting of the SOC block around a horizontal axis trending NNW, is considered a much simpler explanation, being consistent with geologic evidence. This may have occurred as a consequence of inverse reactivation of old normal faults, which limit both the SOC exposures and the Cordillera Sarmiento to the East. The age of tilting is unknown but it must postdate remanence acquisition in the Late Cretaceous. Two major orogenic events of the southern Patagonian Andes, in the Eocene (ca. 42 Ma) and Middle Miocene (ca. 12 Ma), respectively, could have caused the proposed tilting. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sydney Basin is located in the eastern part of Australia, Lachlan Fold Belt, and between the New England Fold Belt. From the Sydney basin at the end of the Late Carboniferous to Middle Triassic experienced back-arc spreading to the foreland basin at different stages: back-arc spreading stage (Carboniferous ), A passive thermal subsidence stage (early in the Permian Berry) and load deflection extruding stage (in Broughton Permian - Triassic). This time at the Sydney basin on the eastern side of the New England Fold Belt for the island Background of the arc. As a result, back-arc in the Permian Basin of the South Sydney basin by the back-arc spreading the eastern side of the arc and trench subduction before the impact of strong seismic activity, the development of a series of earthquake-related seismites to form various types and Seismic activity related to the deformation of soft sediment structure. Permian Basin, South Sydney's soft sediment deformation including cracks in shock-fold, liquefied vein, volcanic sand, load structure, flame Construction, pillow-like structure, spherical structure, pillow Layer structure slump, and so breccia. To which the cracks in shock-fold fibrillation is a direct result of earthquake faults and folds; pillow is a layer of sand caused by the earthquake fibrillation dehydration, the formation of the sinking; liquefied vein, Volcanic sand for the liquefaction of sand penetration of the formation of earthquake fissures formed; load structure, flame Construction, pillow-like structure, spherical structure is affected by the earthquake fibrillation in the sand, mudstone interface because of the sinking sand, mud layer formed through ; Slump structures and breccia of the earthquake was caused by the gravitational collapse or the formation of the debris flow. Fissures, earthquake-fold, liquefied vein, volcanic sand, load structure, flame Construction, pillow-like structure, spherical structure, pillow-like layer Equivalent to the original earthquake rocks the plot, and the slump structures and breccia of the plot belong to different earthquake rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The latest Carboniferous to Triassic Sydney-Gunnedah-Bowen Basin System in the eastern Australia is an elongate structural basin that locates between the Lachlan Caledonian Fold Belt in the west and the New England Fold Belt in the east. Extending from the Gunnedah district in the north to the Batemans Bay in the south, the Sydney Basin is a subbasin located in the southern part of the Sydney-Gunnedah-Bowen Basin System. The Permian in Sydney Basin consists of sedimentary sequences of fluvial, delta, littoral and shallow marine environments, as well as volcanic rocks. In the southwest of southern Sydney Basin, the Permian unconformably onlaps the highly deformed and metamorphosed Lachlan Fold Belts. The Permian System from the southern Sydney Basin comprises the Lower Permian Tallaterang Group (consisting of Clyde Coal Measures and Wasp Head Formation), Shoalhaven Group ( consisting of the Lower Permian Yadboro & Tallong Conglomerate, Yarrunga Coal Measures, Pebbly Beach Formation, Snapper Point Formation and the Middle Permian Wandrawandian Siltstone, Nowra Sandstone, Berry Siltstone and Broughton Formation) and the Upper Permian Illwarra Coal Measures. From the latest Carboniferous to the Middle Triassic, the SydneyBowen Basin had experienced different tectonic phases from a back-arc extensional regime to a typical foreland basin: a back-arc extensional phase, a passive thermal sag phase and a flexural loading and increased compressional phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sydney-Bowen basin in eastern Australia is an elongate back arc-converted foreland basin system situated between the Lachlan Fold Belt in the west and the New England Fold Belt in the east. The Middle Permian Wandrawandian Siltstone at Warden Head near Ulladulla in the southern Sydney Basin is dominated by fossiliferous siltstone and mudstone, with a large amount of dropstones and minor pebbly sandstone beds. Two general types of deposits are recognized from the siltstone unit in view of the timing and mechanism of formation. One is represented by the primary deposits from offshore to subtidal environments with abundant dropstones of glacial marine origin. The second type is distinguished by secondary, soft-sediment deformational deposits and structures, and comprises three layers of mudstone dykes of seismic origin. In the latter type, metre scale, laterally extensive syn-depositional slump deformation structures occur in the middle part of the Wandrawandian Siltstone. The deformation structures vary in morphol-ogy and pattern, including large-scale complex-type folds, flexural stratification, concave-up structures, faulting of small displacements accompanied by folding and brecciation. The slumps and associated syn-sedimentary structures are attributed to penecontemporaneous deformations of soft sediments (mostly silty mud) formed as a result of mass movement of unconsolidated and/or semi-consolidated substrate following an earthquake event. The occurrence of the earthquake event deposits supports the current view that the Sydney Basin was located in a back-arc setting near the New England magmatic arc on an active continental margin during the Middle Permian.