889 resultados para Forecast error variance


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The assimilation of measurements from the stratosphere and mesosphere is becoming increasingly common as the lids of weather prediction and climate models rise into the mesosphere and thermosphere. However, the dynamics of the middle atmosphere pose specific challenges to the assimilation of measurements from this region. Forecast-error variances can be very large in the mesosphere and this can render assimilation schemes very sensitive to the details of the specification of forecast error correlations. An example is shown where observations in the stratosphere are able to produce increments in the mesosphere. Such sensitivity of the assimilation scheme to misspecification of covariances can also amplify any existing biases in measurements or forecasts. Since both models and measurements of the middle atmosphere are known to have biases, the separation of these sources of bias remains a issue. Finally, well-known deficiencies of assimilation schemes, such as the production of imbalanced states or the assumption of zero bias, are proposed explanations for the inaccurate transport resulting from assimilated winds. The inability of assimilated winds to accurately transport constituents in the middle atmosphere remains a fundamental issue limiting the use of assimilated products for applications involving longer time-scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of spurious excitation of gravity waves in the context of four-dimensional data assimilation is investigated using a simple model of balanced dynamics. The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode, and can be initialized such that the model evolves on a so-called slow manifold, where the fast motion is suppressed. Identical twin assimilation experiments are performed, comparing the extended and ensemble Kalman filters (EKF and EnKF, respectively). The EKF uses a tangent linear model (TLM) to estimate the evolution of forecast error statistics in time, whereas the EnKF uses the statistics of an ensemble of nonlinear model integrations. Specifically, the case is examined where the true state is balanced, but observation errors project onto all degrees of freedom, including the fast modes. It is shown that the EKF and EnKF will assimilate observations in a balanced way only if certain assumptions hold, and that, outside of ideal cases (i.e., with very frequent observations), dynamical balance can easily be lost in the assimilation. For the EKF, the repeated adjustment of the covariances by the assimilation of observations can easily unbalance the TLM, and destroy the assumptions on which balanced assimilation rests. It is shown that an important factor is the choice of initial forecast error covariance matrix. A balance-constrained EKF is described and compared to the standard EKF, and shown to offer significant improvement for observation frequencies where balance in the standard EKF is lost. The EnKF is advantageous in that balance in the error covariances relies only on a balanced forecast ensemble, and that the analysis step is an ensemble-mean operation. Numerical experiments show that the EnKF may be preferable to the EKF in terms of balance, though its validity is limited by ensemble size. It is also found that overobserving can lead to a more unbalanced forecast ensemble and thus to an unbalanced analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two recent works have adapted the Kalman–Bucy filter into an ensemble setting. In the first formulation, the ensemble of perturbations is updated by the solution of an ordinary differential equation (ODE) in pseudo-time, while the mean is updated as in the standard Kalman filter. In the second formulation, the full ensemble is updated in the analysis step as the solution of single set of ODEs in pseudo-time. Neither requires matrix inversions except for the frequently diagonal observation error covariance. We analyse the behaviour of the ODEs involved in these formulations. We demonstrate that they stiffen for large magnitudes of the ratio of background error to observational error variance, and that using the integration scheme proposed in both formulations can lead to failure. A numerical integration scheme that is both stable and is not computationally expensive is proposed. We develop transform-based alternatives for these Bucy-type approaches so that the integrations are computed in ensemble space where the variables are weights (of dimension equal to the ensemble size) rather than model variables. Finally, the performance of our ensemble transform Kalman–Bucy implementations is evaluated using three models: the 3-variable Lorenz 1963 model, the 40-variable Lorenz 1996 model, and a medium complexity atmospheric general circulation model known as SPEEDY. The results from all three models are encouraging and warrant further exploration of these assimilation techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper a modified algorithm is suggested for developing polynomial neural network (PNN) models. Optimal partial description (PD) modeling is introduced at each layer of the PNN expansion, a task accomplished using the orthogonal least squares (OLS) method. Based on the initial PD models determined by the polynomial order and the number of PD inputs, OLS selects the most significant regressor terms reducing the output error variance. The method produces PNN models exhibiting a high level of accuracy and superior generalization capabilities. Additionally, parsimonious models are obtained comprising a considerably smaller number of parameters compared to the ones generated by means of the conventional PNN algorithm. Three benchmark examples are elaborated, including modeling of the gas furnace process as well as the iris and wine classification problems. Extensive simulation results and comparison with other methods in the literature, demonstrate the effectiveness of the suggested modeling approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider forecasting with factors, variables and both, modeling in-sample using Autometrics so all principal components and variables can be included jointly, while tackling multiple breaks by impulse-indicator saturation. A forecast-error taxonomy for factor models highlights the impacts of location shifts on forecast-error biases. Forecasting US GDP over 1-, 4- and 8-step horizons using the dataset from Stock and Watson (2009) updated to 2011:2 shows factor models are more useful for nowcasting or short-term forecasting, but their relative performance declines as the forecast horizon increases. Forecasts for GDP levels highlight the need for robust strategies, such as intercept corrections or differencing, when location shifts occur as in the recent financial crisis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers the effect of short- and long-term interest rates, and interest rate spreads upon real estate index returns in the UK. Using Johansen's vector autoregressive framework, it is found that the real estate index cointegrates with the term spread, but not with the short or long rates themselves. Granger causality tests indicate that movements in short term interest rates and the spread cause movements in the returns series. However, decomposition of the forecast error variances from VAR models indicate that changes in these variables can only explain a small proportion of the overall variability of the returns, and that the effect has fully worked through after two months. The results suggest that these financial variables could potentially be used as leading indicators for real estate markets, with corresponding implications for return predictability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examines the rationality and momentum in forecasts for rental, capital value and total returns for the real estate investment market in the United Kingdom. In order to investigate if forecasters are affected by the general economic conditions present at the time of forecast we incorporate into the analysis Gross Domestic Product(GDP) and the Default Spread (DS). The empirical findings show high levels of momentum in the forecasts, with highly persistent forecast errors. The results also indicate that forecasters are affected by adverse conditions. This is consistent with the finding that they tend to exhibit greater forecast error when the property market is underperforming and vice-versa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extreme variability of the winter- and spring-time stratospheric polar vortex has been shown to affect extratropical tropospheric weather. Therefore, reducing stratospheric forecast error may be one way to improve the skill of tropospheric weather forecasts. In this review, the basis for this idea is examined. A range of studies of different stratospheric extreme vortex events shows that they can be skilfully forecasted beyond five days and into the sub-seasonal range (0-30 days) in some cases. Separate studies show that typical errors in forecasting a stratospheric extreme vortex event can alter tropospheric forecasts skill by 5-7% in the extratropics on sub-seasonal timescales. Thus understanding what limits stratospheric predictability is of significant interest to operational forecasting centres. Both limitations in forecasting tropospheric planetary waves and stratospheric model biases have been shown to be important in this context.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Satellite-based (e.g., Synthetic Aperture Radar [SAR]) water level observations (WLOs) of the floodplain can be sequentially assimilated into a hydrodynamic model to decrease forecast uncertainty. This has the potential to keep the forecast on track, so providing an Earth Observation (EO) based flood forecast system. However, the operational applicability of such a system for floods developed over river networks requires further testing. One of the promising techniques for assimilation in this field is the family of ensemble Kalman (EnKF) filters. These filters use a limited-size ensemble representation of the forecast error covariance matrix. This representation tends to develop spurious correlations as the forecast-assimilation cycle proceeds, which is a further complication for dealing with floods in either urban areas or river junctions in rural environments. Here we evaluate the assimilation of WLOs obtained from a sequence of real SAR overpasses (the X-band COSMO-Skymed constellation) in a case study. We show that a direct application of a global Ensemble Transform Kalman Filter (ETKF) suffers from filter divergence caused by spurious correlations. However, a spatially-based filter localization provides a substantial moderation in the development of the forecast error covariance matrix, directly improving the forecast and also making it possible to further benefit from a simultaneous online inflow error estimation and correction. Additionally, we propose and evaluate a novel along-network metric for filter localization, which is physically-meaningful for the flood over a network problem. Using this metric, we further evaluate the simultaneous estimation of channel friction and spatially-variable channel bathymetry, for which the filter seems able to converge simultaneously to sensible values. Results also indicate that friction is a second order effect in flood inundation models applied to gradually varied flow in large rivers. The study is not conclusive regarding whether in an operational situation the simultaneous estimation of friction and bathymetry helps the current forecast. Overall, the results indicate the feasibility of stand-alone EO-based operational flood forecasting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations through the minimisation of a least-squares objective function, which is constrained by the model flow. We refer to 4DVAR as strong-constraint 4DVAR (sc4DVAR) in this thesis as it assumes the model is perfect. Relaxing this assumption gives rise to weak-constraint 4DVAR (wc4DVAR), leading to a different minimisation problem with more degrees of freedom. We consider two wc4DVAR formulations in this thesis, the model error formulation and state estimation formulation. The 4DVAR objective function is traditionally solved using gradient-based iterative methods. The principle method used in Numerical Weather Prediction today is the Gauss-Newton approach. This method introduces a linearised `inner-loop' objective function, which upon convergence, updates the solution of the non-linear `outer-loop' objective function. This requires many evaluations of the objective function and its gradient, which emphasises the importance of the Hessian. The eigenvalues and eigenvectors of the Hessian provide insight into the degree of convexity of the objective function, while also indicating the difficulty one may encounter while iterative solving 4DVAR. The condition number of the Hessian is an appropriate measure for the sensitivity of the problem to input data. The condition number can also indicate the rate of convergence and solution accuracy of the minimisation algorithm. This thesis investigates the sensitivity of the solution process minimising both wc4DVAR objective functions to the internal assimilation parameters composing the problem. We gain insight into these sensitivities by bounding the condition number of the Hessians of both objective functions. We also precondition the model error objective function and show improved convergence. We show that both formulations' sensitivities are related to error variance balance, assimilation window length and correlation length-scales using the bounds. We further demonstrate this through numerical experiments on the condition number and data assimilation experiments using linear and non-linear chaotic toy models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I start presenting an explicit solution to Taylorís (2001) model, in order to illustrate the link between the target interest rate and the overnight interest rate prevailing in the economy. Next, I use Vector Auto Regressions to shed some light on the evolution of key macroeconomic variables after the Central Bank of Brazil increases the target interest rate by 1%. Point estimates show a four-year accumulated output loss ranging from 0:04% (whole sample, 1980 : 1-2004 : 2; quarterly data) to 0:25% (Post-Real data only) with a Örst-year peak output response between 0:04% and 1:0%; respectively. Prices decline between 2% and 4% in a 4-year horizon. The accumulated output response is found to be between 3:5 and 6 times higher after the Real Plan than when the whole sample is considered. The 95% confidence bands obtained using bias-corrected bootstrap always include the null output response when the whole sample is used, but not when the data is restricted to the Post-Real period. Innovations to interest rates explain between 4:9% (whole sample) and 9:2% (post-Real sample) of the forecast error of GDP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that cointegration between the level of two variables (labeled Yt and yt in this paper) is a necessary condition to assess the empirical validity of a present-value model (PV and PVM, respectively, hereafter) linking them. The work on cointegration has been so prevalent that it is often overlooked that another necessary condition for the PVM to hold is that the forecast error entailed by the model is orthogonal to the past. The basis of this result is the use of rational expectations in forecasting future values of variables in the PVM. If this condition fails, the present-value equation will not be valid, since it will contain an additional term capturing the (non-zero) conditional expected value of future error terms. Our article has a few novel contributions, but two stand out. First, in testing for PVMs, we advise to split the restrictions implied by PV relationships into orthogonality conditions (or reduced rank restrictions) before additional tests on the value of parameters. We show that PV relationships entail a weak-form common feature relationship as in Hecq, Palm, and Urbain (2006) and in Athanasopoulos, Guillén, Issler and Vahid (2011) and also a polynomial serial-correlation common feature relationship as in Cubadda and Hecq (2001), which represent restrictions on dynamic models which allow several tests for the existence of PV relationships to be used. Because these relationships occur mostly with nancial data, we propose tests based on generalized method of moment (GMM) estimates, where it is straightforward to propose robust tests in the presence of heteroskedasticity. We also propose a robust Wald test developed to investigate the presence of reduced rank models. Their performance is evaluated in a Monte-Carlo exercise. Second, in the context of asset pricing, we propose applying a permanent-transitory (PT) decomposition based on Beveridge and Nelson (1981), which focus on extracting the long-run component of asset prices, a key concept in modern nancial theory as discussed in Alvarez and Jermann (2005), Hansen and Scheinkman (2009), and Nieuwerburgh, Lustig, Verdelhan (2010). Here again we can exploit the results developed in the common cycle literature to easily extract permament and transitory components under both long and also short-run restrictions. The techniques discussed herein are applied to long span annual data on long- and short-term interest rates and on price and dividend for the U.S. economy. In both applications we do not reject the existence of a common cyclical feature vector linking these two series. Extracting the long-run component shows the usefulness of our approach and highlights the presence of asset-pricing bubbles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The broader objective of this study undertaking can briefly be articulated in particulate aims as follows: to measure the attitudes of consumers regarding the brand displayed by this strategy as well as to highlight recall, recognition and purchase intentions generated by product placement on consumers. In addition, check the differences and similarities between the behavior of Brazilian and American consumers caused by the influence of product placements. The study was undertaken targeting consumer audience in Brazil and the U.S. A rang3 modeling set ups were performed in order to realign study instruments and hypothesis towards the research objectives. This study gave focus on the following hypothesized models. H1: Consumers / Participants who viewed the brands / products in the movie have a higher brand / product recall compared to the consumers / participants who did not view the brands / products in the movie. H2: US Consumers / Participants are able to recognize and recall brands / products which appear in the background of the movie than Brazil. H3: Consumers / participants from USA are more accepting of product placements compared to their counterparts in Brazil. H4: There are discernible similarities in consumer / participant brand attitudes and purchase intentions in consumers / participants from USA and Brazil in spite of the fact that their country of origin is different. Cronbach’s Alpha Coefficient ensured the reliability of survey instruments. The study involved the use of the Structural Equation Modeling (SEM) for the hypothesis testing. This study used the Confirmatory Factor Analysis (CFA) to assess both the convergent and discriminant validities instead of using the Exploratory Factor Analysis (EFA) or the Principal Component Analysis (PCA). This reinforced for the use of the regression Chi Square and T statistical tests in further. Only hypothesis H3 was rejected, the rest were not. T test provided insight findings on specific subgroup significant differences. In the SEM testing, the error variance for product placement attitudes was negative for both the groups. On this The Heywood Case came in handy to fix negative values. The researcher used both quantitative and qualitative approach where closed ended questionnaires and interviews respectively were used to collect primary data. The results were additionally provided with tabulations. It can be concluded that, product placement varies markedly in the U.S. from Brazil based on the influence a range of factors provided in the study. However, there are elements of convergence probably driven by the convergence in technology. In order, product placement to become more competitive in the promotional marketing, there will be the need for researchers to extend focus from the traditional variables and add knowledge on the conventional marketplace factors that is the sell-ability of the product placement technologies and strategies.