920 resultados para Food web
Resumo:
The Marine Strategy Framework Directive (MSFD) requires that European Union Member States achieve "Good Environmental Status" (GES) in respect of 11 Descriptors of the marine environment by 2020. Of those, Descriptor 4, which focuses on marine food webs, is perhaps the most challenging to implement since the identification of simple indicators able to assess the health of highly dynamic and complex interactions is difficult. Here, we present the proposed food web criteria/indicators and analyse their theoretical background and applicability in order to highlight both the current knowledge gaps and the difficulties associated with the assessment of GES. We conclude that the existing suite of indicators gives variable focus to the three important food web properties: structure, functioning and dynamics, and more emphasis should be given to the latter two and the general principles that relate these three properties. The development of food web indicators should be directed towards more integrative and process-based indicators with an emphasis on their responsiveness to multiple anthropogenic pressures. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Carbon (C) and nitrogen (N) stable isotope analysis (SIA) has been used to identify the terrestrial subsidy of freshwater food webs. However, SIA fails to differentiate between the contributions of old and recently fixed terrestrial C and consequently cannot fully determine the source, age, and biochemical quality of terrestrial carbon. Natural abundance radiocarbon (∆14C) was used to examine the age and origin of carbon in Lower Lough Erne, Northern Ireland. 14C and stable isotope values were obtained from invertebrate, algae, and fish samples, and the results indicate that terrestrial organic C is evident at all trophic levels. High winter δ15N values in calanoid zooplankton (δ15N = 24‰) relative to phytoplankton and particulate organic matter (δ15N = 6‰ and 12‰, respectively) may reflect several microbial trophic levels between terrestrial C and calanoid invertebrates. Winter and summer calanoid ∆14C values show a seasonal switch between autochthonous and terrestrial carbon sources. Fish ∆14C values indicate terrestrial support at the highest trophic levels in littoral and pelagic food webs. 14C therefore is useful in attributing the source of carbon in freshwater in addition to tracing the pathway of terrestrial carbon through the food web.
Resumo:
Globally lakes bury and remineralise significant quantities of terrestrial C, and the associated flux of terrestrial C strongly influences their functioning. Changing deposition chemistry, land use and climate induced impacts on hydrology will affect soil biogeochemistry and terrestrial C export1 and hence lake ecology with potential feedbacks for regional and global C cycling. C and nitrogen stable isotope analysis (SIA) has identified the terrestrial subsidy of freshwater food webs. The approach relies on different 13C fractionation in aquatic and terrestrial primary producers, but also that inorganic C demands of aquatic primary producers are partly met by 13C depleted C from respiration of terrestrial C, and ‘old’ C derived from weathering of catchment geology. SIA thus fails to differentiate between the contributions of old and recently fixed terrestrial C. Natural abundance 14C can be used as an additional biomarker to untangle riverine food webs2 where aquatic and terrestrial δ 13C overlap, but may also be valuable for examining the age and origin of C in the lake. Primary production in lakes is based on dissolved inorganic C (DIC). DIC in alkaline lakes is partially derived from weathering of carbonaceous bedrock, a proportion of which is14C-free. The low 14C activity yields an artificial age offset leading samples to appear hundreds to thousands of years older than their actual age. As such, 14C can be used to identify the proportion of autochthonous C in the food-web. With terrestrial C inputs likely to increase, the origin and utilisation of ‘fossil’ or ‘recent’ allochthonous C in the food-web can also be determined. Stable isotopes and 14C were measured for biota, particulate organic matter (POM), DIC and dissolved organic carbon (DOC) from Lough Erne, Northern Ireland, a humic alkaline lake. Temporal and spatial variation was evident in DIC, DOC and POM C isotopes with implications for the fluctuation in terrestrial export processes. Ramped pyrolysis of lake surface sediment indicates the burial of two C components. 14C activity (507 ± 30 BP) of sediment combusted at 400˚C was consistent with algal values and younger than bulk sediment values (1097 ± 30 BP). The sample was subsequently combusted at 850˚C, yielding 14C values (1471 ± 30 BP) older than the bulk sediment age, suggesting that fossil terrestrial carbon is also buried in the sediment. Stable isotopes in the food web indicate that terrestrial organic C is also utilised by lake organisms. High winter δ 15N values in calanoid zooplankton (δ 15N = 24%¸) relative to phytoplankton and POM (δ 15N = 6h and 12h respectively) may reflect several microbial trophic levels between terrestrial C and calanoids. Furthermore winter calanoid 14C ages are consistent with DOC from an inflowing river (75 ± 24 BP), not phytoplankton (367 ± 70 BP). Summer calanoid δ 13C, δ 15N and 14C (345 ± 80 BP) indicate greater reliance on phytoplankton.
1 Monteith, D.T et al., (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450:537-535
2 Caraco, N., et al.,(2010) Millennial-aged organic carbon subsidies to a modern river food web. Ecology,91: 2385-2393.
Resumo:
Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two fish species, one top predator (Imparfinis mirini) and one intermediate detritivorous species (Hisonotus depressicauda), were experimentally manipulated to evaluate their relative importance in structuring the periphytic community, as well as their effects on the other trophic levels. An enclosure experiment was conducted in the Potreirinho creek, a second order tributary of Paranapanema River, SE Brazil. Five treatments were used: enclosure of the predator species. enclosure of the detritivorous species, enclosure of both together, exclusion of all fish species (closed control cage), and cage open to all fish community, (open control). Through direct and indirect effects, I. mirini, when alone gave rise to a trophic cascade that resulted in a positive effect on algal resources. Through direct effects, H. depressicauda. when alone, reduced the amount of organic matter, resulting in a positive indirect effect on algae. In addition, when the two species were enclosed together, only the effects determined by the detritivorous species were present. The results indicate the important role of the intermediate detritivorous species in the maintenance of the composition and trophic structure of the analyzed community by reducing the effects caused by the top predator.
Resumo:
This study investigated the structure and properties of a tropical stream food web in a small spatial scale, characterizing its planktonic, epiphytic and benthic compartments. The study was carried out in the Potreirinho Creek, a second-order stream located in the south-east of Brazil. Some attributes of the three subwebs and of the conglomerate food web, composed by the trophic links of the three compartments plus the fish species, were determined. Among compartments, the food webs showed considerable variation in structure. The epiphytic food web was consistently more complex than the planktonic and benthic webs. The values of number of species, number of links and maximum food chain length were significantly higher in the epiphytic compartment than in the other two. Otherwise, the connectance was significantly lower in epiphyton. The significant differences of most food web parameters were determined by the increase in the number of trophic species, represented mainly by basal and intermediate species. High species richness, detritus-based system and high degree of omnivory characterized the stream food web studied. The aquatic macrophytes probably provide a substratum more stable and structurally complex than the sediment. We suggest that the greater species richness and trophic complexity in the epiphytic subweb might be due to the higher degree of habitat complexity supported by macrophyte substrate. Despite differences observed in the structure of the three subwebs, they are highly connected by trophic interactions, mainly by fishes. The high degree of fish omnivory associated with their movements at different spatial scales suggests that these animals have a significant role in the food web dynamic of Potreirinho Creek. This interface between macrophytes and the interconnections resultant from fish foraging, diluted the compartmentalization of the Potreirinho food web.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Food webs have been used in order to understand the trophic relationship among organisms within an ecosystem, however the extension by which sampling efficiency could affect food web responses remain poorly understood. Still, there is a lack of long-term sampling data for many insect groups, mainly related to the interactions between herbivores and their host plants. In the first chapter, I describe a source food web based on the Senegalia tenuifolia plant by identifying the associated insect species and the interactions among them and with this host plant. Furthermore, I check for the data robustness from each trophic level and propose a cost-efficiently methodology. The results from this chapter show that the collected dataset and the methodology presented are a good tool for sample most insect richness of a source food web. In total the food web comprises 27 species belonging to four trophic levels. In the second chapter, I demonstrate the temporal variation in the species richness and abundance from each trophic level, as well as the relationship among distinct trophic levels. Moreover, I investigate the diversity patterns of the second and third trophic level by assessing the contribution of alfa and beta-diversity components along the years. This chapter shows that in our system the parasitoid abundance is regulated by the herbivore abundances. Besides, the species richness and abundances of the trophic levels vary temporally. It also shows that alfa-diversity was the diversity component that most contribute to the herbivore species diversity (2nd trophic level), while the contribution of alfa- and beta-diversity changed along the years for parasitoid diversity (3rd level). Overall, this dissertation describes a source food web and bring insights into some food web challenges related to the sampling effort to gather enough species from all trophic levels. It also discuss the relation among communities associated with distinct trophic levels and their temporal variation and diversity patterns. Finally, this dissertation contributes for the world food web database and in understanding the interactions among its trophic levels and each trophic level pattern along time and space
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study raised the hypothesis that the trophic status in a tropical coastal food web from southeastern Brazil can be measured by the relation between total mercury (THg) and nitrogen isotope (delta(15)N) in their components. The analysed species were grouped into six trophic positions: primary producer (phytoplankton), primary consumer (zooplankton), consumer 1 (omnivore shrimp), consumer 2 (pelagic carnivores represented by squid and fish species), consumer 3 (demersal carnivores represented by fish species) and consumer 4 (pelagic-demersal top carnivore represented by the fish Trichiurus lepturus). The values of THg, delta(15)N, and trophic level (TLv) increased significantly from primary producer toward top carnivore. Our data regarding trophic magnification (6.84) and biomagnification powers (0.25 for delta(15)N and 0.83 for TLv) indicated that Hg biomagnification throughout trophic positions is high in this tropical food web, which could be primarily related to the quality of the local water.
Resumo:
Patterns of species interactions affect the dynamics of food webs. An important component of species interactions that is rarely considered with respect to food webs is the strengths of interactions, which may affect both structure and dynamics. In natural systems, these strengths are variable, and can be quantified as probability distributions. We examined how variation in strengths of interactions can be described hierarchically, and how this variation impacts the structure of species interactions in predator-prey networks, both of which are important components of ecological food webs. The stable isotope ratios of predator and prey species may be particularly useful for quantifying this variability, and we show how these data can be used to build probabilistic predator-prey networks. Moreover, the distribution of variation in strengths among interactions can be estimated from a limited number of observations. This distribution informs network structure, especially the key role of dietary specialization, which may be useful for predicting structural properties in systems that are difficult to observe. Finally, using three mammalian predator-prey networks ( two African and one Canadian) quantified from stable isotope data, we show that exclusion of link-strength variability results in biased estimates of nestedness and modularity within food webs, whereas the inclusion of body size constraints only marginally increases the predictive accuracy of the isotope-based network. We find that modularity is the consequence of strong link-strengths in both African systems, while nestedness is not significantly present in any of the three predator-prey networks.