986 resultados para Food utilization efficiencies
Resumo:
These guidelines have been produced to support the implementation of the Code of Conduct for Responsible Fisheries particularly with regard to the need for responsibility in the post– harvest sector of the fish producing industry. The industry that produces fish for food has three major areas of responsibility: to the consumer of the food to ensure that it is safe to eat, is of expected quality and nutritional value, to the resource to ensure that it is not wasted and to the environment to ensure that negative impacts are minimized. In addition the industry has a responsibility to itself to ensure the continued ability of many millions of people throughout the world to earn a gainful living from working within the industry. Article 11.1 of the Code of Conduct for Responsible Fisheries and other related parts of the Code are concerned particularly with these responsibilities. This publication provides annotation to and guidance on these articles to assist those charged with implementation of the Code to identify possible courses of action necessary to ensure that the industry is conducted in a sustainable manner. (PDF contains 42 pages)
Resumo:
The estimated potential of Nigerian fish resources is 1,830,994 tonnes(t) whereas the demand based on per capita consumption of 12.0kg and a population of 88.5 million is 1.085 million tonnes. Supply is presently less than 500,000 tons. The gap between demand and supply have to be met through improved utilization and increased availability of fish and fishery products. The role of fish in nutrition is recognized, since it supplies a good balance of protein, vitamins and minerals and a relatively low caloric content. This paper appraises the consumption and utilisation pattern of fish in Nigeria, the spoilage of fish and prevention of losses as a means of increasing the availability of fish for human consumption and consequent control of aggravated animal protein deficiency - induced malnutrition. The paper further highlights the point that without increased landings, increased supply of fish can be achieved through reduction of postharvest loss of what is presently caught. The use of newly designed smoke - drying equipment to achieve such goal is highlighted. The paper also emphasises the need to put into human food chain those non-conventional fishery resources and by-catch of shrimp and demersal trawl fishes by conversion into high value protein products like fish cakes, fish pies and salted dried cakes
Resumo:
The digestibility and utilisation of two fresh soybean milk concentrate based diets, two stale soybean milk concentrate based diets and two Fishman based diets serving as control, at optimal (30%) and suboptimal (20%) protein levels were evaluated in Oreochromis niloticus. The diets were as follows: Diet I (control) - fishmeal based diet at 30% crude protein, Diet II (control) Fishman based diet at 20% crude protein, Diet III - fresh soybean milk concentrate based diet at 30% crude protein, Diet IV - fresh soybean milk concentrate based diet at 20%, Diet V - stale soybean milk concentrate based diet at 30% crude protein, Diet VI-stale soybean milk concentrate based diet at 20%. Dry matter digestibility differed not significantly with variation in diets (P:0.05). A significant variation was recorded in the protein, lipid and ash digestibility. Proteins were more digestible at optimum than suboptimum level. Ash digestibility was lowest of all the nutrients. Variations in the utilisation of the diets in terms of weight gain, specific growth rate, food conversion ration, protein efficiency ration and apparent net protein utilization were insignificant (P: 0.05). All diets compared favourably with the standard control diet Diet I. This findings suggest the suitability of stale soybean milk concentrate utilisation as protein supplements in the diets of late fry Oreochromis niloticus
Resumo:
Women, all over the world have contributed in various ways to the social, political and economic development of the Society. In fact, the World Resource Institute recognizes that "women have profound and preserve effect onn the well-being of their families, communities and local ecosystems" (Gamble and Well 1997:211). Women constitute more than 50 percent of the Agricultural (Fisheries being a sub sector), labour force. A study on Women in Fisheries showed that they participate in all aspects of the sector (capture, culture, processing, marketing research, training and Extension services). This paper reports the result of the study on women's contributions in the development of the Fisheries Industry particularly their roles in Fish Food Security, Poverty Alleviation and high rates of women's adoption of Fisheries technologies. The Case-study research methodology is used to study the "How" and "Why" Women's Contribution in Fish Food Security and Poverty Alleviation is at the index level recorded for the gender. The study made use of "Case Study" Research Instrument; documents, interview, artefacts, direct observation and archival records. The sampling techniques were purposive for research audiences and simple random for fisher-folks in the chosen locations. Analysed data showed among others that in Fisheries Research women occupy very important positions as Heads of Division/Section, Fisheries Liasion/Extension Officers and Fisheries Laboratory Chiefs etc. The paper also gave results of women production, processing, marketing and other services statistics; it also discusses the "whys" of women's low capacity in fisheries development of the nation and finally suggested ways in improving women's optimal capacity utilization in fisheries development
Resumo:
Clarias (Clarias gariepinus) (Burshell, 1821) fingerlings were fed isonitrogenous diets (38.9% crude protein) with fermented fluted pumpkin leaves (FFPL) replacing different proportion (0,50,75,100%) of extruded soybean meal (ESM) for 8 weeks. Growth responses at the different substitution levels measured. Increasing FFPL intake resulted in better weight gains and higher specific growth rates (SGR) of 0.29, 0.36 and 0.38% per day respectively. The increase in growth from feeding diets containing 75% and 100% of the ESM replaced with FFPL were significantly higher (P<0.05) than those of other diets. Further more fish tissue protein deposition consistently increased with increasing level of FFPL concentration in their diets. Fish fed diets where whole ESM was replace 100% FFPL gave the best overall response in terms of their weight gain, food conversion ratio, protein efficiency ratio, and specific growth rate. Economic considerations indicate the replacement of ESM with FFPL, which is a cheaper ingredient in feeds for Clarias
Resumo:
Abstract Growth and condition of fish are functions of available food and environmental conditions. This led to the idea of using fish as a “consumption sensor” for the measurement of food intake over a defined period of time. A bio-physical model for the estimation of food consumption was developed based on the von Bertalanffy model. Whereas some of the input variables of the model, the initial and final lengths and masses of a fish and the temperature within the time period considered can easily be measured, internal characteristics of the species have to be determined indirectly. Three internal parameters are used in the model: the maintenance consumption at 0°C, the temperature dependence of this consumption and the food efficiency, the percentage of the ingested food utilized. Estimates of the parameters for a given species can be determined by feeding experiments. Here, data from published feeding experiments on juvenile cod, Gadus morhua L., were used to validate the model. The average of the relative error for the food intake predicted by the model for individual fish was about 24 %, indicating that fish used the food with different efficiencies. However, grouping the fish according to size classes and temperature lowered the relative error of the predicted food intake for the group to typically 5 %. For a group containing all fish of the feeding experiment the relative prediction error was about 2 %. Zusammenfassung Wachstum und Kondition der Fische sind von der verfügbaren Nahrung und von Umweltbedingungen abhängig. Dies führte zur Idee, Fisch als „Konsum-Sensor“ für die Messung der Nahrungsaufnahme über einen definierten Zeitraum zu verwenden. Auf Grundlage des von Bertalanffy-Modells wurde ein bio-physikalisches Modell zur Schätzung der Futteraufnahme entwickelt. Während einige der Eingangsgrößen des Modells leicht gemessen werden können (Anfangs- und Endlänge und -körpermasse der Fische und die Temperatur innerhalb des betrachteten Zeitraum), können interne Parameter der betrachteten Art nur indirekt bestimmt werden. Drei interne Parameter werden in dem Modell verwendet: Die Erhaltungskonsumtion bei 0° C, die Temperaturabhängigkeit dieser Rate und der Wirkungsgrad der Nahrung (der Anteil der Nahrung ,der aufgenommen und verwendet und nicht ungenutzt wieder ausgeschieden wird). Die Modellparameter für eine bestimmte Art können durch Fütterungsversuche bestimmt werden. Um das Modell zu validieren wurden Daten aus veröffentlichten Fütterungsversuchen mit juvenilen Kabeljau (Gadus morhua L.) verwendet. Modell und Wirklichkeit weichen in der Regel voneinander ab. Der durchschnittliche relative Fehler der durch das Modell vorhergesagten Nahrungsaufnahme betrug für Einzelfische etwa 24%, was darauf hinweist, dass einzelne Fisch die Nahrung mit unterschiedlichen Wirkungsgraden verwerten. Allerdings senkte die Gruppierung der Fische nach Größenklassen und Temperatur den relativen Vorhersagefehler für die Nahrungsaufnahme der Gruppe auf etwa 5%. Für alle Fische im Fütterungsversuch ist der relative Vorhersagefehler etwa 2%.
Resumo:
In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays. The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.
Resumo:
This study was conducted using 150 fish of Clarias gariepinus to investigate the growth performance and nutrient utilization of Clarias gariepinus fed five treatment diets containing varying inclusion level of fermented unsieved maize. The diets were grouped into CT, T1, T2, T3, and T4 with inclusion levels of 25%, 50%, 75%, and 100% of fermented unsieved maize respectively. Highest weight gain was recorded in T4 with value of 10.24 and lowest weight was recorded in CT with 9.17. High FCR were observed in T2 with value of 0.70 and lower value was observed in T4 with value of 0.62. While, T2, T3, and T4 have highest survival rates with values of 90% in each treatment CT and T1 recorded 80% and 70% respectively. There was a significant (p< 0.05) difference between the food conversion ratios treatment T4 with the best value and other treatments. There was a significant (p< 0.05) difference between the levels of fermented unsieved maize inclusion and the specific growth rate of the experimental fish. The highest value of protein level and feed efficiency were observed in T4 at significant difference level (p< 0.05) than other treatments. It was concluded that fermentation of maize in fish feed has positive effects on the nutritional value of the feed. It is recommend that fermented maize can replace raw maize in fish feed diet for growth performance. KEYWORDS: Fermentation, yellow maize, Clarias gariepinus, Fish, Feed.
Resumo:
This study was conducted using 150 fish of Clarias gariepinus to investigate the growth performance and nutrient utilization of Clarias gariepinus fed five treatment diets containing varying inclusion level of fermented unsieved maize. The diets were grouped into CT, T1, T2, T3, and T4 with inclusion levels of 25%, 50%, 75%, and 100% of fermented unsieved maize respectively. Highest weight gain was recorded in T4 with value of 10.24 and lowest weight was recorded in CT with 9.17. High FCR were observed in T2 with value of 0.70 and lower value was observed in T4 with value of 0.62. While, T2, T3, and T4 have highest survival rates with values of 90% in each treatment CT and T1 recorded 80% and 70% respectively. There was a significant (p< 0.05) difference between the food conversion ratios treatment T4 with the best value and other treatments. There was a significant (p< 0.05) difference between the levels of fermented unsieved maize inclusion and the specific growth rate of the experimental fish. The highest value of protein level and feed efficiency were observed in T4 at significant difference level (p< 0.05) than other treatments. It was concluded that fermentation of maize in fish feed has positive effects on the nutritional value of the feed. It is recommend that fermented maize can replace raw maize in fish feed diet for growth performance.
Resumo:
Seaweeds have been used as food, medicine, fertilizers, soil conditioner and source of salt. Realizing the potentials of seaweeds, research and development thrusts have been geared towards improving and developing its product applications. Today, various applications of seaweeds have been developed and improved. The major success in the seaweed industry is the development of phycocolloids with the following specific applications: 1) agar; 2) carrageenans; and, 3) alginates.
Resumo:
The nutritional function of monosaccharides, disaccharides and polysaccharides for omnivorous gibel carp and carnivorous Chinese longsnout catfish were investigated and the ability of these two species to utilize carbohydrates was compared. For each species, triplicate groups of fish were assigned to each of five groups of isoenergetic and isonitrogenous experimental diets with different carbohydrate sources: glucose, sucrose, dextrin, soluble starch (acid-modified starch) and alpha-cellulose. The carbohydrates were included at 60 g kg(-1) in Chinese longsnout catfish diets and at 200 g kg(-1) in gibel carp diets. A growth trial was carried out in a recirculation system at 27.8 +/- 1.9 degrees C for 8 weeks. The results showed that fish with different food habits showed difference in the utilization of carbohydrate sources. For gibel carp, better specific growth rate (SGR) and feed efficiency (FE) were observed in fish fed diets containing soluble starch and cellulose, but for Chinese longsnout catfish, better SGR and FE were observed in fish fed diets containing dextrin and sucrose. Apparent digestibility coefficient of dry matter (ADC(d)) and apparent digestibility coefficient of energy (ADC(e)) were significantly affected by dietary carbohydrate sources in gibel carp. ADC(d) and ADC(e) significantly decreased as dietary carbohydrate complexity increased in Chinese longsnout catfish except that glucose diet had medium ADC(d) and ADC(e). In both species, no significant difference of apparent digestibility coefficient of protein was observed between different carbohydrate sources. Dietary carbohydrate sources significantly affected body composition, and liver phosphoenolpyruvate carboxykinase (PEPCK), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME) activities also varied according to dietary carbohydrate complexity. Fish with different food habits showed different abilities to synthesize liver glycogen, and the liver glycogen content in gibel carp was significantly higher than in Chinese longsnout catfish. The influence of carbohydrate source on gluconeogenesis and lipogenesis was also different in the two fish species.
Resumo:
Individual juvenile three-spined sticklebacks Gasterosteus aculeatus and European minnow Phoxinus phoxinus, from sympatric populations, were subjected to four cycles of I week of food deprivation and 2 weeks of ad libitum feeding. Mean specific growth rate during the weeks of deprivation was negative and did not differ between species. The three-spined stickleback showed sufficient growth compensation to recover to the growth trajectory shown by control fish daily fed ad libitum. The compensation was generated by hyperphagia during the re-feeding periods, and in the last two periods of re-feeding, the gross growth efficiencies of deprived three-spined sticklebacks were greater than in control fish. The expression of the compensatory changes in growth and food consumption became clearer over the successive periods of re-feeding. The European minnow developed only a weak compensatory growth response and the mass trajectory of the deprived fish deviated more and more from the control trajectory During re-feeding periods, there were no significant differences in food consumption or gross growth efficiency between control and deprived European minnows. The differences between the two species are discussed in terms of the possible costs of compensatory growth, the control of growth and differences in feeding biology (C) 2003 The Fisheries Society of the British Isles.
Resumo:
Juvenile (3.0 +/- 0.2 g) gibel carp (Carassius auratus gibelio ) were fed to satiation for 8 weeks to investigate the effect of feeding frequency on growth, feed utilization and size variation. Five feeding frequencies were tested: two meals per day (M2), three meals per day (M3), four meals per day (M4), 12 meals per day (M12) and 24 meals per day (M24). The results showed that daily food intake increased significantly with the increase in feeding frequency and there was no significant difference between daily food intakes in M12 and M24 treatments. Growth rate, feed efficiency increased significantly with increasing feeding frequencies. Size variation was not affected by feeding frequency. Apparent digestibility of dry matter was not influenced by feeding frequency, while apparent digestibility of protein and energy increased significantly at high feeding frequencies. The feeding frequency had no significant effect on the moisture, lipid, protein, or energy contents of gibel carp, while the ash content decreased with increased feeding frequency. It was recommended that 24 meals per day was the optimal feeding frequency for juvenile gibel carp.
Resumo:
Following a period of food deprivation, gibel carp compensated for growth through increased feed intake and conversion efficiency, but increased conversion efficiency was not achieved by increasing digestibility or reducing activity. (C) 2000 The Fisheries Society of the British Isles.