950 resultados para Fluid Flow Modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This technical report discusses the application of Lattice Boltzmann Method (LBM) in the fluid flow simulation through porous filter-wall of disordered media. The diesel particulate filter (DPF) is an example of disordered media. DPF is developed as a cutting edge technology to reduce harmful particulate matter in the engine exhaust. Porous filter-wall of DPF traps these soot particles in the after-treatment of the exhaust gas. To examine the phenomena inside the DPF, researchers are looking forward to use the Lattice Boltzmann Method as a promising alternative simulation tool. The lattice Boltzmann method is comparatively a newer numerical scheme and can be used to simulate fluid flow for single-component single-phase, single-component multi-phase. It is also an excellent method for modelling flow through disordered media. The current work focuses on a single-phase fluid flow simulation inside the porous micro-structure using LBM. Firstly, the theory concerning the development of LBM is discussed. LBM evolution is always related to Lattice gas Cellular Automata (LGCA), but it is also shown that this method is a special discretized form of the continuous Boltzmann equation. Since all the simulations are conducted in two-dimensions, the equations developed are in reference with D2Q9 (two-dimensional 9-velocity) model. The artificially created porous micro-structure is used in this study. The flow simulations are conducted by considering air and CO2 gas as fluids. The numerical model used in this study is explained with a flowchart and the coding steps. The numerical code is constructed in MATLAB. Different types of boundary conditions and their importance is discussed separately. Also the equations specific to boundary conditions are derived. The pressure and velocity contours over the porous domain are studied and recorded. The results are compared with the published work. The permeability values obtained in this study can be fitted to the relation proposed by Nabovati [8], and the results are in excellent agreement within porosity range of 0.4 to 0.8.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lava flow modeling can be a powerful tool in hazard assessments; however, the ability to produce accurate models is usually limited by a lack of high resolution, up-to-date Digital Elevation Models (DEMs). This is especially obvious in places such as Kilauea Volcano (Hawaii), where active lava flows frequently alter the terrain. In this study, we use a new technique to create high resolution DEMs on Kilauea using synthetic aperture radar (SAR) data from the TanDEM-X (TDX) satellite. We convert raw TDX SAR data into a geocoded DEM using GAMMA software [Werner et al., 2000]. This process can be completed in several hours and permits creation of updated DEMs as soon as new TDX data are available. To test the DEMs, we use the Harris and Rowland [2001] FLOWGO lava flow model combined with the Favalli et al. [2005] DOWNFLOW model to simulate the 3-15 August 2011 eruption on Kilauea's East Rift Zone. Results were compared with simulations using the older, lower resolution 2000 SRTM DEM of Hawaii. Effusion rates used in the model are derived from MODIS thermal infrared satellite imagery. FLOWGO simulations using the TDX DEM produced a single flow line that matched the August 2011 flow almost perfectly, but could not recreate the entire flow field due to the relatively high DEM noise level. The issues with short model flow lengths can be resolved by filtering noise from the DEM. Model simulations using the outdated SRTM DEM produced a flow field that followed a different trajectory to that observed. Numerous lava flows have been emplaced at Kilauea since the creation of the SRTM DEM, leading the model to project flow lines in areas that have since been covered by fresh lava flows. These results show that DEMs can quickly become outdated on active volcanoes, but our new technique offers the potential to produce accurate, updated DEMs for modeling lava flow hazards.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Chonta Mine (75º00’30” W & 13º04’30”S, 4495 to 5000 m absl), owned by Compañía Minera Caudalosa, operates a polymetallic Zn-Pb-Cu-Ag vein system of the low sulphidation epithermal type, hosted by cenozoic volcanics of dacitic to andesitic composition (Domos de Lava Formation). Veta Rublo, one of the main veins of the system, is worked underground to nearly 300 m. It strikes 60-80º NE and dips 60-70º SE; its width varies between 0.30 and 2.20m, and it crops out along 1 km, but is continued along strike by other veins, as Veta Caudalosa, for some 5 km. Typical metal contents are 7% Zn, 5% Pb, 0.4% Cu and 3 oz/t Ag, with quartz, sericite, sphalerite, galena, pyrite, chalcopyrite, fahlore as main minerals, and minor carbonate and sulphosalts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Esperanza Zn-Pb-Ag vein, owned by Compañía de Minas Buenaventura S.A.A., lies over 4000 to 4650 masl in the Western Cordillera of the Peruvian Central Andes. The Esperanza low sulphidation epithermal vein trends ~E-W along 1500 m; it dips to the South and can be followed to 350 m depth. As other veins of the district, like Teresita and Bienaventurada, it is hosted by intermediate to felsic volcanics (andesitic to dacitic compositions) of the Huachocolpa Group (Middle Miocene to Upper Pliocene). The mineralisation occurs mostly as open space filling related to fracture development during the Quechua III deformational event. Main ore minerals are sphalerite, galena, tetrahedrite, pyrite, chalcopyrite and Ag and Pb sulfosalts; quartz, barite and calcite are the main gangue minerals. Current production grades are ~5% Zn, ~8Oz/t Ag, ~3% Pb; usually very low Cu (mean ~0.04%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Quarterly progress report".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"TID-3305 (Supplement 1)"