944 resultados para Flow function
Resumo:
Management of sodic soils under irrigation often requires application of chemical ameliorants to improve permeability combined with leaching of excess salts. Modeling irrigation, soil treatments, and leaching in these sodic soils requires a model that can adequately represent the physical and chemical changes in the soil associated with the amelioration process. While there are a number of models that simulate reactive solute transport, UNSATCHEM and HYDRUS-1D are currently the only models that also include an ability to simulate the impacts of soil chemistry on hydraulic conductivity. Previous researchers have successfully applied these models to simulate amelioration experiments on a sodic loam soil. To further gauge their applicability, we extended the previous work by comparing HYDRUS simulations of sodic soil amelioration with the results from recently published laboratory experiments on a more reactive, repacked sodic clay soil. The general trends observed in the laboratory experiments were able to be simulated using HYDRUS. Differences between measured and simulated results were attributed to the limited flexibility of the function that represents chemistry-dependent hydraulic conductivity in HYDRUS. While improvements in the function could be made, the present work indicates that HYDRUS-UNSATCHEM captures the key changes in soil hydraulic properties that occur during sodic clay soil amelioration and thus extends the findings of previous researchers studying sodic loams.
Resumo:
Human genetic and animal studies have implicated the costimulatory molecule CD40 in the development of multiple sclerosis (MS). We investigated the cell specific gene and protein expression variation controlled by the CD40 genetic variant(s) associated with MS, i.e. the T-allele at rs1883832. Previously we had shown that the risk allele is expressed at a lower level in whole blood, especially in people with MS. Here, we have defined the immune cell subsets responsible for genotype and disease effects on CD40 expression at the mRNA and protein level. In cell subsets in which CD40 is most highly expressed, B lymphocytes and dendritic cells, the MS-associated risk variant is associated with reduced CD40 cell-surface protein expression. In monocytes and dendritic cells, the risk allele additionally reduces the ratio of expression of full-length versus truncated CD40 mRNA, the latter encoding secreted CD40. We additionally show that MS patients, regardless of genotype, express significantly lower levels of CD40 cell-surface protein compared to unaffected controls in B lymphocytes. Thus, both genotype-dependent and independent down-regulation of cell-surface CD40 is a feature of MS. Lower expression of a co-stimulator of T cell activation, CD40, is therefore associated with increased MS risk despite the same CD40 variant being associated with reduced risk of other inflammatory autoimmune diseases. Our results highlight the complexity and likely individuality of autoimmune pathogenesis, and could be consistent with antiviral and/or immunoregulatory functions of CD40 playing an important role in protection from MS. © 2015 Field et al.
Resumo:
The objective of this study is to examine the association between ambient temperature and children’s lung function in Baotou, China. We recruited 315 children (8–12 years) from Baotou, China in the spring of 2004, 2005, and 2006. They performed three successive forced expiratory measurements three times daily (morning, noon, and evening) for about 5 weeks. The highest peak expiratory flow (PEF) was recorded for each session. Daily data on ambient temperature, relative humidity, and air pollution were monitored during the same period. Mixed models with a distributed lag structure were used to examine the effects of temperature on lung function while adjusting for individual characteristics and environmental factors. Low temperatures were significantly associated with decreases in PEF. The effects lasted for lag 0–2 days. For all participants, the cumulative effect estimates (lag 0–2 days) were −1.44 (−1.93, −0.94) L/min, −1.39 (−1.92, −0.86) L/min, −1.40 (−1.97, −0.82) L/min, and −1.28 (−1.69, −0.88) L/min for morning, noon, evening, and daily mean PEF, respectively, associated with 1 °C decrease in daily mean temperature. Generally, the effects of temperature were slightly stronger in boys than in girls for noon, evening, and daily mean PEF, while the effects were stronger in girls for morning PEF. PM2.5 had joint effects with temperature on children’s PEF. Higher PM2.5 increased the impacts of low temperature. Low ambient temperatures are associated with lower lung function in children in Baotou, China. Preventive health policies will be required for protecting children from the cold weather.
Resumo:
In this article, natural convection boundary layer flow is investigated over a semi-infinite horizontal wavy surface. Such an irregular (wavy) surface is used to exchange heat with an external radiating fluid which obeys Rosseland diffusion approximation. The boundary layer equations are cast into dimensionless form by introducing appropriate scaling. Primitive variable formulations (PVF) and stream function formulations (SFF) are independently used to transform the boundary layer equations into convenient form. The equations obtained from the former formulations are integrated numerically via implicit finite difference iterative scheme whereas equations obtained from lateral formulations are simulated through Keller-box scheme. To validate the results, solutions produced by above two methods are compared graphically. The main parameters: thermal radiation parameter and amplitude of the wavy surface are discussed categorically in terms of shear stress and rate of heat transfer. It is found that wavy surface increases heat transfer rate compared to the smooth wall. Thus optimum heat transfer is accomplished when irregular surface is considered. It is also established that high amplitude of the wavy surface in the boundary layer leads to separation of fluid from the plate.
Resumo:
The effect of the magnetic field on the unsteady flow over a stretching surface in a rotating fluid has been studied. The unsteadiness in the flow field is due to the time-dependent variation of the velocity of the stretching surface and the angular velocity of the rotating fluid. The Navier-Stokes equations and the energy equation governing the flow and the heat transfer admit a self-similar solution if the velocity of the stretching surface and the angular velocity of the rotating fluid vary inversely as a linear function of time. The resulting system of ordinary differential equations is solved numerically using a shooting method. The rotation parameter causes flow reversal in the component of the velocity parallel to the strerching surface and the magnetic field tends to prevent or delay the flow reversal. The surface shear stresses dong the stretching surface and in the rotating direction increase with the rotation parameter, but the surface heat transfer decreases. On the other hand, the magnetic field increases the surface shear stress along the stretching surface, but reduces the surface shear stress in the rotating direction and the surface heat transfer. The effect of the unsteady parameter is more pronounced on the velocity profiles in the rotating direction and temperature profiles.
Resumo:
Immunization of proven fertile adult male monkeys (n = 3) with a recombinant FSH receptor protein preparation (oFSHR-P) (representing amino acids 1-134 of the extracellular domain of the receptor Mr similar to 15KDa) resulted in production of receptor blocking antibodies. The ability of the antibody to bind a particulate FSH receptor preparation and receptors in intact granulosa cells was markedly (by 30-80%) inhibited by FSH. Serum T levels and LH receptor function following immunization remained unchanged. The immunized monkeys showed a 50% reduction (p<0.001) in transformation of spermatogonia(2C) to primary spermatocytes (4C) as determined by flow cytometry and the 4C:2C ratio showed a correlative change (R 0.81, p<0.0007) with reduction in fertility index (sperm counts X motility score). Breeding studies indicated that monkeys became infertile between 242-368 days of immunization when the fertility index was in the range of 123+/-76 to 354+/-42 (compared to a value of 1602+/-384 on day 0). As the effects observed ate near identical to that seen following immunization with FSH it is suggestive that oFSHR-P can substitute for FSH in the development of a contraceptive vaccine.
Resumo:
It has been well accepted that over 50% of cerebral ischemic events are the result of rupture of vulnerable carotid atheroma and subsequent thrombosis. Such strokes are potentially preventable by carotid interventions. Selection of patients for intervention is currently based on the severity of carotid luminal stenosis. It has been, however, widely accepted that luminal stenosis alone may not be an adequate predictor of risk. To evaluate the effects of degree of luminal stenosis and plaque morphology on plaque stability, we used a coupled nonlinear time-dependent model with flow-plaque interaction simulation to perform flow and stress/strain analysis for stenotic artery with a plaque. The Navier-Stokes equations in the Arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations for the fluid. The Ogden strain energy function was used for both the fibrous cap and the lipid pool. The plaque Principal stresses and flow conditions were calculated for every case when varying the fibrous cap thickness from 0.1 to 2mm and the degree of luminal stenosis from 10% to 90%. Severe stenosis led to high flow velocities and high shear stresses, but a low or even negative pressure at the throat of the stenosis. Higher degree of stenosis and thinner fibrous cap led to larger plaque stresses, and a 50% decrease of fibrous cap thickness resulted in a 200% increase of maximum stress. This model suggests that fibrous cap thickness is critically related to plaque vulnerability and that, even within presence of moderate stenosis, may play an important role in the future risk stratification of those patients when identified in vivo using high resolution MR imaging.
Resumo:
The effect of a magnetic field on the flow and oxygenation of an incompressible Newtonian conducting fluid in channels with irregular boundaries has been investigated. The geometric parameter δ, which is a ratio of the mean half width of the channel d to the characteristic length λ along the channel over which the significant changes in the flow quantities occur, has been used for perturbing the governing equations. Closed form solutions of the various order equations are presented for the stream function. The equations for oxygen partial pressure remain nonlinear even after perturbation, therefore a numerical solution is presented. The expressions for shear stress at a wall and pressure distributions are derived. Here the separation in the flow occurs at a higher Reynolds number than the corresponding non-magnetic case. It is found that the magnetic field has an effect on local oxygen concentration but has a little effect on the saturation length.
Resumo:
Atherosclerosis is the main underlying pathology of coronary heart disease. Coronary heart disease is a serious health problem in Finland, and it is the leading cause of morbidity and mortality in industrialized countries. Psychological stress correlates with coronary heart disease events – myocardial infarction and sudden death, which are the most common clinical syndromes of atherosclerotic narrowing of arteries. The present series of studies examines the interaction between stress and endothelial function in relation to atherosclerosis. The study also aims to give new information on the mechanisms through which stress has its effect on atherosclerosis progression, focusing on possible relations between psychological stress and the functioning of the endothelium. Our project is based on data from one of the largest national epidemiological studies, the Cardiovascular Risk in Young Finns study, which has monitored the development of risk factors for coronary heart disease in 3596 young adults since 1980. The present study combines experimental stress research with epidemiology and uses an advanced method for examining atherosclerosis development in healthy subjects (intima-media thickness ultrasound measurement). The physiological parameters used were heart rate, respiratory sinus arrhythmia and pre-ejection period. Chronic stress was assessed by vital exhaustion. The ultrasound measurements that served as the indexes of preclinical atherosclerosis were carotid intima-media thickness, brachial flow-mediated dilatation and carotid artery compliance. The effects of cardiovascular risk factors found to be important were taken into account: serum cholesterols level, triglyceride level, serum insulin level and systolic and diastolic blood pressure. There were 69, 1596, 81 and 1721 participants in studies I-IV, respectively. The results showed that both chronic and acute stress may exert an effect on atherosclerosis in subjects with impaired endothelial responses. The findings are consistent with the idea that risk factors are more harmful if the endothelium is not working properly. Chronic stress was found to be a risk if it has resulted in ineffective cardiac stress reactivity or delayed recovery. Men were shown to be at increased risk for atherosclerotic progression in early life, which suggests men’s decreased stress coping ability in relation to stressful psychosocial coronary risk factors. Autonomic imbalance may be the common mechanism of the stress influence on atherosclerosis development. The results of the present study contain background information for the identification the first stages of atherosclerosis, and they may be useful for preventive medicine programs for young adults and could help to improve cardiovascular health in Finland as well as in other countries.
Resumo:
Self-contained Non-Equilibrium Molecular Dynamics (NEMD) simulations using Lennard-Jones potentials were performed to identify the origin and mechanisms of atomic scale interfacial behavior between sliding metals. The mixing sequence and velocity profiles were compared via MD simulations for three cases, viz.: sell-mated, similar and hard-softvcrystal pairs. The results showed shear instability, atomic scale mixing, and generation of eddies at the sliding interface. Vorticity at the interface suggests that atomic flow during sliding is similar to fluid flow under Kelvin-Helmholtz instability and this is supported by velocity profiles from the simulations. The initial step-function velocity profile spreads during sliding. However the velocity profile does not change much at later stages of the simulation and it eventually stops spreading. The steady state friction coefficient during simulation was monitored as a function of sliding velocity. Frictional behavior can be explained on the basis of plastic deformation and adiabatic effects. The mixing layer growth kinetics was also investigated.
Resumo:
The hydrodynamical problem of flow in proximal renal tubule is investigated by considering axisymmetric flow of a viscous, incompressible fluid through a long narrow tube of varying cross-section with reabsorption at the wall. Two cases for reabsorption have been studied (i) when the bulk flow,Q, decays exponentially with the axial distancex, and (ii) whenQ is an arbitrary function ofx such thatQ-Q 0 can be expressed as a Fourier integral (whereQ 0 is the flux atx=0). The analytic expressions for flow variables have been obtained by applying perturbation method in terms of wall parameter ε. The effects of ε on pressure drop across the tube, radial velocity and wall shear have been studied in the case of exponentially decaying bulk flow and it has been found that the results are in agreement with the existing ones for the renal tubules.
Resumo:
The accumulation of deficits with increasing age results in a decline in the functional capacity of multiple organs and systems. These changes can have a significant influence on the pharmacokinetics and pharmacodynamics of prescribed drugs. Although alterations in body composition and worsening renal clearance are important considerations, for most drugs the liver has the greatest effect on metabolism. Age-related change in hepatic function thereby causes much of the variability in older people’s responses to medication. In this review, we propose that a decline in the ability of the liver to inactivate toxins may contribute to a proinflammatory state in which frailty can develop. Since inflammation also downregulates drug metabolism, medication prescribed to frail older people in accordance with disease-specific guidelines may undergo reduced systemic clearance, leading to adverse drug reactions, further functional decline and increasing polypharmacy, exacerbating rather than ameliorating frailty status. We also describe how increasing chronological age and frailty status impact liver size, blood flow and protein binding and enzymes of drug metabolism. This is used to contextualise our discussion of appropriate prescribing practices. For example, while the general axiom of ‘start low, go slow’ should underpin the initiation of medication (titrating to a defined therapeutic goal), it is important to consider whether drug clearance is flow or capacity-limited. By summarising the effect of age-related changes in hepatic function on medications commonly used in older people, we aim to provide a guide that will have high clinical utility for practising geriatricians.
Resumo:
CONTEXT: Conduit artery flow-mediated dilation (FMD) is a noninvasive index of preclinical atherosclerosis in humans. Exercise interventions can improve FMD in both healthy and clinical populations. OBJECTIVE: This systematic review and meta-analysis aimed to summarize the effect of exercise training on FMD in overweight and obese children and adolescents as well as investigate the role of cardiorespiratory fitness (peak oxygen consumption [Vo2peak]) on effects observed. DATA SOURCES: PubMed, Medline, Embase, and Cinahl databases were searched from the earliest available date to February 2015. STUDY SELECTION: Studies of children and/or adolescents who were overweight or obese were included. DATA EXTRACTION: Standardized data extraction forms were used for patient and intervention characteristics, control/comparator groups, and key outcomes. Procedural quality of the studies was assessed using a modified version of the Physiotherapy Evidence Base Database scale. RESULTS: A meta-analysis involving 219 participants compared the mean difference of pre- versus postintervention vascular function (FMD) and Vo2peak between an exercise training intervention and a control condition. There was a significantly greater improvement in FMD (mean difference 1.54%, P < .05) and Vo2peak (mean difference 3.64 mL/kg/min, P < .05) after exercise training compared with controls. LIMITATIONS: Given the diversity of exercise prescriptions, participant characteristics, and FMD measurement protocols, varying FMD effect size was noted between trials. CONCLUSIONS: Exercise training improves vascular function in overweight and obese children, as indicated by enhanced FMD. Further research is required to establish the optimum exercise program for maintenance of healthy vascular function in this at-risk pediatric population.
Resumo:
Asymmetrical flow field-flow fractionation (AsFlFFF) was constructed, and its applicability to industrial, biochemical, and pharmaceutical applications was studied. The effect of several parameters, such as pH, ionic strength, temperature and the reactants mixing ratios on the particle sizes, molar masses, and the formation of aggregates of macromolecules was determined by AsFlFFF. In the case of industrial application AsFlFFF proved to be a valuable tool in the characterization of the hydrodynamic particle sizes, molar masses and phase transition behavior of various poly(N-isopropylacrylamide) (PNIPAM) polymers as a function of viscosity and phase transition temperatures. The effect of sodium chloride salt and the molar ratio of cationic and anionic polyelectrolytes on the hydrodynamic particle sizes of poly (methacryloxyethyl trimethylammonium chloride) and poly (ethylene oxide)-block-poly (sodium methacrylate) and their complexes were studied. The particle sizes of PNIPAM polymers, and polyelectrolyte complexes measured by AsFlFFF were in agreement with those obtained by dynamic light scattering. The molar masses of PNIPAM polymers obtained by AsFlFFF and size exclusion chromatography agreed also well. In addition, AsFlFFF proved to be a practical technique in thermo responsive behavior studies of polymers at temperatures up to about 50 oC. The suitability of AsFlFFF for biological, biomedical, and pharmaceutical applications was proved, upon studying the lipid-protein/peptide interactions, and the stability of liposomes at different temperatures. AsFlFFF was applied to the studies on the hydrophobic and electrostatic interactions between cytochrome c (a basic peripheral protein) and anionic lipid, and oleic acid, and sodium dodecyl sulphate surfactant. A miniaturized AsFlFFF constructed in this study was exploited in the elucidation of the effect of copper (II), pH, ionic strength, and vortexing on the particle sizes of low-density lipoproteins.
Resumo:
- Provided a practical variable-stepsize implementation of the exponential Euler method (EEM). - Introduced a new second-order variant of the scheme that enables the local error to be estimated at the cost of a single additional function evaluation. - New EEM implementation outperformed sophisticated implementations of the backward differentiation formulae (BDF) of order 2 and was competitive with BDF of order 5 for moderate to high tolerances.