879 resultados para Flexural modulus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive an easy-to-compute approximate bound for the range of step-sizes for which the constant-modulus algorithm (CMA) will remain stable if initialized close to a minimum of the CM cost function. Our model highlights the influence, of the signal constellation used in the transmission system: for smaller variation in the modulus of the transmitted symbols, the algorithm will be more robust, and the steady-state misadjustment will be smaller. The theoretical results are validated through several simulations, for long and short filters and channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed at evaluating the mechanical, physical and biological properties of laminated veneer lumber (LVL) made from Pinus oocarpa Schiede ex Schltdl (PO) and Pinus kesiya Royle ex Gordon (PK) and at providing a nondestructive characterization thereof. Four PO and four PK LVL boards from 22 randomly selected 2-mm thickness veneers were produced according to the following characteristics: phenol-formaldehyde (190 g/m(2)), hot-pressing at 150A degrees C for 45 min and 2.8 N/mm(2) of specific pressure. After board production, nondestructive evaluation was conducted, and stress wave velocity (v (0)) and dynamic modulus of elasticity (E (Md) ) were determined. The following mechanical and physical properties were then evaluated: static bending modulus of elasticity (E (M) ), modulus of rupture (f (M) ), compression strength parallel to grain (f (c,0)), shear strength parallel to glue-line (f (v,0)), shear strength perpendicular to glue-line (f (v,90)), thickness swelling (TS), water absorption (WA), and permanent thickness swelling (PTS) for 2, 24, and 96-hour of water immersion. Biological property was also evaluated by measuring the weight loss by Trametes versicolor (Linnaeus ex Fries) Pilat (white-rot) and Gloeophyllum trabeum (Persoon ex Fries.) Murrill (brown-rot). After hot-pressing, no bubbles, delamination nor warping were observed for both species. In general, PK boards presented higher mechanical properties: E (M) , E (Md) , f (M) , f (c,0) whereas PO boards were dimensionally more stable, with lower values of WA, TS and PTS in the 2, 24, and 96-hour immersion periods. Board density, f (v,0), f (v,90) and rot weight loss were statistically equal for PO and PK LVL. The prediction of flexural properties of consolidated LVL by the nondestructive method used was not very efficient, and the fitted models presented lower predictability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter-layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat-type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic-perfectly plastic. Condition of slip at the interfaces are determined by a Mohr-Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14:87-104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub-vertical slopes. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple equations are proposed for determining elastic modulus and hardness properties of thin films on substrates from nanoindentation experiments. An empirical formulation relates the modulus E and hardness H of the film/substrate bilayer to corresponding material properties of the constituent materials via a power-law relation. Geometrical dependence of E and H is wholly contained in the power-law exponents, expressed here as sigmoidal functions of indenter penetration relative to film thickness. The formulation may be inverted to enable deconvolution of film properties from data on the film/substrate bilayers. Berkovich nanoindentation data for dense oxide and nitride films on silicon substrates are used to validate the equations and to demonstrate the film property deconvolution. Additional data for less dense nitride films are used to illustrate the extent to which film properties may depend on the method of fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on a self-similar array model, we systematically investigated the axial Young's modulus (Y-axis) of single-walled carbon nanotube (SWNT) arrays with diameters from nanometer to meter scales by an analytical approach. The results show that the Y-axis of SWNT arrays decreases dramatically with the increases of their hierarchy number (s) and is not sensitive to the specific size and constitution when s is the same, and the specific Young's modulus Y-axis(s) is independent of the packing configuration of SWNTs. Our calculations also show that the Y-axis of SWNT arrays with diameters of several micrometers is close to that of commercial high performance carbon fibers (CFs), but the Y-axis(s) of SWNT arrays is much better than that of high performance CFs. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of the opaque layer firing temperature and mechanical and thermal cycling on the flexural strength of a ceramic fused to commercial cobalt-chromium alloy (Co-Cr). The hypotheses were that higher opaque layer temperatures increase the metal/ceramic bond strength and that aging reduces the bond strength. Materials and Methods: Metallic frameworks (25 x 3 x 0.5 mm(3); ISO 9693) (N = 60) were cast in Co-Cr and airborne-particle abraded (Al(2)O(3): 150 mu m) at the central area of the frameworks (8 x 3 mm(2)) and divided into three groups (N = 20), according to the opaque layer firing temperature: Gr1 (control)-900 degrees C; Gr2-950 degrees C; Gr3-1000 degrees C. The opaque ceramic (Opaque, Vita Zahnfabrick, Bad Sackingen, Germany) was applied, and the glass ceramic (Vita Omega 900, Vita Zahnfabrick) was fired onto it (thickness: 1 mm). While half the specimens from each group were randomly tested without aging (water storage: 37 degrees C/24 hours), the other half were mechanically loaded (20,000 cycles; 50 N load; distilled water at 37 degrees C) and thermocycled (3000 cycles; 5 degrees C to 55 degrees C, dwell time: 30 seconds). After the flexural strength test, failure types were noted. The data were analyzed using 2-way ANOVA and Tukey`s test (alpha = 0.05). Results: Gr2 (19.41 +/- 5.5 N) and Gr3 (20.6 +/- 5 N) presented higher values than Gr1 (13.3 +/- 1.6 N) (p = 0.001). Mechanical and thermal cycling did not significantly influence the mean flexural strength values (p > 0.05). Increasing the opaque layer firing temperature improved the flexural bond strength values (p < 0.05). The hypotheses were partially accepted. Conclusion: Increasing of the opaque layer firing temperature improved the flexural bond strength between ceramic fused to Co-Cr alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 mu m aluminum oxide at the central area of the frameworks (8 mm x 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: I mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 degrees C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 degrees C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey`s test (alpha = 0.05). Results. The mean flexural strength values for the ceramic-gold alloy combination (55 +/- 7.2MPa) were significantly higher than those of the ceramic-Ti cp combination (32 +/- 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 +/- 6.6 and 53 +/- 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 +/- 6.8 and 29 +/- 6.8 MPa, respectively) compared to the control group (58 +/- 7.8 and 39 SA MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey`s test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance. Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Collagen disorganization is one of the main degradation patterns found in unsuccessful adhesive restorations. The hypothesis of this study was that pretreatment using natural collagen cross-linking agents rich in proanthocyanidin (PA) would improve mechanical properties and stability over time of the dentin collagen and, thus, confer a more resistant and lasting substrate for adhesive restorations. Methods: PA-based extracts, from grape seed (GSE), cocoa seed (CSE), cranberry (CRE), cinnamon (CNE) and acai berry (ACE) were applied over the demineralized dentin. The apparent elastic modulus (E) of the treated dentin collagen was analyzed over a 12 month period. Specimens were immersed in the respective solution and E values were obtained by a micro-flexural test at baseline, 10, 30, 60, 120 and 240 min. Samples were stored in artificial saliva and re-tested after 3, 6 and 12 months. Data was analyzed using ANOVA and Tukey test. Results: GSE and CSE extracts showed a time-dependent effect and were able to improve [240 min (MPa): GSE = 108.96 +/- 56.08: CSE = 59.21 +/- 24.87] and stabilize the E of the organic matrix [12 months (MPa): GSE = 40.91 +/- 19.69; CSE = 42.11 +/- 13.46]. CRE and CNE extracts were able to maintain the E of collagen matrices constant over 12 months [CRE = 11.17 +/- 7.22; CNE = 9.96 +/- 6.11; MPa]. ACE (2.64 +/- 1.22 MPa) and control groups immersed in neat distilled water (1.37 +/- 0.69 MPa) and ethanol-water (0.95 +/- 0.33 MPa) showed no effect over dentin organic matrix and enable their degradation and reduction of mechanical properties. Significance: Some PA-based extracts were capable of improving and stabilizing collagen matrices through exogenous cross-links induction. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To determine the slow crack growth (SCG) and Weibull parameters of five dental ceramics: a vitreous porcelain (V), a leucite-based porcelain (D), a leucite-based glass-ceramic (E1), a lithium disilicate glass-ceramic (E2) and a glass-infiltrated alumina composite (IC). Methods. Eighty disks (empty set 12mm x 1.1mm thick) of each material were constructed according to manufacturers` recommendations and polished. The stress corrosion susceptibility coefficient (n) was obtained by dynamic fatigue test, and specimens were tested in biaxial flexure at five stress rates immersed in artificial saliva at 37 degrees C. Weibull parameters were calculated for the 30 specimens tested at 1MPa/s in artificial saliva at 37 degrees C. The 80 specimens were distributed as follows: 10 for each stress rate (10(-2), 10(-1), 10(1), 10(2) MPa/s), 10 for inert strength (10(2) MPa/s, silicon oil) and 30 for 10(0) MPa/s. Fractographic analysis was also performed to investigate the fracture origin. Results. E2 showed the lowest slow crack growth susceptibility coefficient (17.2), followed by D (20.4) and V (26.3). E1 and IC presented the highest n values (30.1 and 31.1, respectively). Porcelain V presented the lowest Weibull modulus (5.2). All other materials showed similar Weibull modulus values, ranging from 9.4 to 11.7. Fractographic analysis indicated that for porcelain D, glass-ceramics E1 and E2, and composite IC crack deflection was the main toughening mechanism. Significance. This study provides a detailed microstructural and slow crack growth characterization of widely used dental ceramics. This is important from a clinical standpoint to assist the clinician in choosing the best ceramic material for each situation as well as predicting its clinical longevity. It also can be helpful in developing new materials for dental prostheses. (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To compare currently available low-shrinkage composites with others regarding polymerization stress, volumetric shrinkage (total and post-gel), shrinkage rate and elastic modulus. Methods. Seven BisGMA-based composites (Durafill/DU, Filtek Z250/FZ, Heliomolar/HM, Aelite LS Posterior/AP, Point 4/P4, Filtek Supreme/SU, ELS/EL), a silorane-based (Filtek LS, LS), a urethane-based (Venus Diamond, VD) and one based on a dimethacrylate-derivative of dimer acid (N`Durance, ND) were tested. Polymerization stress was determined in 1-mm high specimens inserted between two PMMA rods attached to a universal testing machine. Total volumetric shrinkage was measured using a mercury dilatometer. Maximum shrinkage rate was used as a parameter of the reaction speed. Post-gel shrinkage was measured using strain-gages. Elastic modulus was obtained by three-point bending. Data were submitted to one-way ANOVA/Tukey test (p = 0.05), except for elastic modulus (Kruskal-Wallis). Results. Composites ranked differently for total and post-gel shrinkage. Among the materials considered as ""low-shrinkage"" by the respective manufacturers, LS, EL and VD presented low post-gel shrinkage, while AP and ND presented relatively high values. Polymerization stress showed a strong correlation with post-gel shrinkage except for LS, which presented high stress. Elastic modulus and shrinkage rate showed weak relationships with polymerization stress. Significance. Not all low-shrinkage composites demonstrated reduced polymerization shrinkage. Also, in order to effectively reduce polymerization stress, a low post-gel shrinkage must be associated to a relatively low elastic modulus. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. The role of inorganic content on physical properties of resin composites is well known. However, its influence on polymerization stress development has not been established. The aim of this investigation was to evaluate the influence of inorganic fraction on polymerization stress and its determinants, namely, volumetric shrinkage, elastic modulus and degree of conversion. Methods. Eight experimental composites containing 1:1 BisGMA (bisphenylglycidyl dimethacrylate): TEGDMA (triethylene glycol dimethacrylate) (in mol) and barium glass at increasing concentrations from 25 to 60 vol.% (5% increments) were tested. Stress was determined in a universal test machine using acrylic as bonding substrate. Nominal polymerization stress was obtained diving the maximum load by the cross-surface area. Shrinkage was measured using a water picnometer. Elastic modulus was obtained by three-point flexural test. Degree of conversion was determined by FT-Raman spectroscopy. Results. Polymerization stress and shrinkage showed inverse relationships with filler content (R(2) = 0.965 and R(2) = 0.966, respectively). Elastic modulus presented a direct correlation with inorganic content (R(2) = 0.984). Degree of conversion did not vary significantly. Polymerization stress showed a strong direct correlation with shrinkage (R(2) = 0.982) and inverse with elastic modulus (R(2) = 0.966). Significance. High inorganic contents were associated with low polymerization stress values, which can be explained by the reduced volumetric shrinkage presented by heavily filled composites. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To evaluate the biaxial and short-beam uniaxial strength tests applied to resin composites based upon their Weibull parameters, fractographic features and stress distribution. Methods. Disk- (15 mm x 1 mm) and beam-shaped specimens (10 mm x 2 mm x 1 mm) of three commercial composites (Concept/Vigodent, CA; Heliomolar/Ivoclar-Vivadent, HE; Z250/3M ESPE, FZ) were prepared. After 48h dry storage at 37 degrees C, disks and beams were submitted to piston-on-three-balls (BI) and three-point bending (UNI) tests, respectively. Data were analyzed by Weibull statistics. Fractured surfaces were observed under stereomicroscope and scanning electron microscope. Maximum principal stress (sigma(1)) distribution was determined by finite element analysis (FEA). Maximum sigma(1-BI) and sigma(1-UNI) were compared to FZ strengths calculated by applying the average failure loads to the analytical equations (sigma(a-BI) and sigma(a-UNI)). Results. For BI, characteristic strengths were: 169.9a (FZ), 122.4b (CA) and 104.8c (HE), and for UNI were: 160.3a (FZ), 98.2b (CA) and 91.6b (HE). Weibull moduli ( m) were similar within the same test. CA and HE presented statistically higher m for BI. Surface pores ( BI) and edge flaws ( UNI) were the most frequent fracture origins. sigma(1-BI) was 14% lower than sigma(a-BI.) sigma(1-UNI) was 43% higher than sigma(a-UNI). Significance. Compared to the short-beam uniaxial test, the biaxial test detected more differences among composites and displayed less data scattering for two of the tested materials. Also, biaxial strength was closer to the material`s strength estimated by FEA. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The definition of an optimal elastic modulus for a post is controversial. This work hypothesized that the influence of the posts` elastic modulus on dentin stress concentration is dependent on the load direction. The objective was to evaluate, using finite element analysis, the maximum principal stress (sigma(max)) on the root, using posts with different elastic modulus submitted to different loading directions. Nine 3D models were built, representing the dentin root, gutta-percha, a conical post and the cortical bone. The softwares used were: MSC.PATRAN2005r2 (preprocessing) and MSC.Marc2005r2 (processing). Load of 100 N was applied, varying the directions (0 degrees, 45 degrees and 90 degrees) in relation to the post`s long axis. The magnitude and direction of the sigma(max) were recorded. At the 45 degrees and 90 degrees loading, the highest values of sigma(max) were recorded for the lowest modulus posts, on the cervical region, with a direction that suggests debonding of the post. For the 0 degrees loading, the highest values of sigma(max) were recorded for higher modulus posts, on the apical region, and the circumferential direction suggests vertical root fracture. The hypothesis was accepted: the effect of the elastic modulus on the magnitude and direction of the sigma(max) generated on the root was dependent on the loading direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different monomer structures lead to different physical and mechanical properties for both the monomers and the polymers. The objective of this study was to determine the influence of the bisphenylglycidyl dimethacrylate (BisGMA) concentration (33, 50 or 66 mol%) and the co-monomer content [triethylene glycol dimethacrylate (TEGDMA), ethoxylated bisphenol-A dimethacrylate (BisEMA), or both in equal parts] on viscosity (eta), degree of conversion (DC), and flexural strength (FS). eta was measured using a viscometer, DC was obtained by Fourier transfer Raman (FT-Raman) spectroscopy, and FS was determined by three-point bending. At 50 and 66% BisGMA, increases in eta were observed following the partial and total substitution of TEGDMA by BisEMA. For 33% BisGMA, eta increased significantly only when no TEGDMA was present. The DC was influenced by BisGMA content and co-monomer type. Mixtures containing 66% BisGMA showed a lower DC compared with mixtures containing other concentrations of BisGMA. The BisEMA mixtures had a lower DC compared with the TEGDMA mixtures. The FS was influenced by co-monomer content only. BisEMA mixtures presented a statistically lower FS, followed by TEGDMA + BisEMA mixtures, and then by TEGDMA mixtures. Partial or total replacement of TEGDMA by BisEMA increased eta, which was associated with the observed decreases in DC and FS. Although the BisGMA content influenced the DC, it did not affect the FS results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. To determine the effect of ion exchange on slow crack growth (SCG) parameters (n, stress corrosion susceptibility coefficient, and sigma(f0), scaling parameter) and Weibull parameters (m, Weibull modulus, and sigma(0), characteristic strength) of a dental porcelain. Methods. 160 porcelain discs were fabricated according to manufacturer`s instructions, polished through 1 mu m and divided into two groups: GC (control) and GI (submitted to an ion exchange procedure using a KNO(3) paste at 470 degrees C for 15 min). SCG parameters were determined by biaxial flexural strength test in artificial saliva at 37 degrees C using five constant stress rates (n =10). 20 specimens of each group were tested at 1 MPa/s to determine Weibull parameters. The SPT diagram was constructed using the least-squares fit of the strength data versus probability of failure. Results. Mean values of m and sigma(0) (95% confidence interval), n and sigma(f0) (standard deviation) were, respectively: 13.8 (10.1-18.8) and 60.4 (58.5 - 62.2), 24.1 (2.5) and 58.1 (0.01) for GC and 7.4 (5.3 -10.0) and 136.8 (129.1-144.7), 36.7 (7.3) and 127.9 (0.01) for GI. Fracture stresses (MPa) calculated using the SPT diagram for lifetimes of 1 day, 1 year and 10 years (at a 5% failure probability) were, respectively, 31.8, 24.9 and 22.7 for GC and 71.2, 60.6 and 56.9 for GI. Significance. For the porcelain tested, the ion exchange process improved strength and resistance to SCG, however, the material`s reliability decreased. The predicted fracture stress at 5% failure probability for a lifetime of 10 years was also higher for the ion treated group. (C) 009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.