989 resultados para Flexible roll forming


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The LiteSteel beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. The LSBs are commonly used as flexural members in buildings. However, the LSB flexural members are subjected to lateral distortional buckling, which reduces their member moment capacities. Unlike the commonly observed lateral torsional buckling of steel beams, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist, and cross sectional change due to web distortion. An experimental study including more than 50 lateral buckling tests was therefore conducted to investigate the behaviour and strength of LSB flexural members. It included the available 13 LSB sections with spans ranging from 1200 to 4000 mm. Lateral buckling tests based on a quarter point loading were conducted using a special test rig designed to simulate the required simply supported and loading conditions accurately. Experimental moment capacities were compared with the predictions from the design rules in the Australian cold-formed steel structures standard. The new design rules in the standard were able to predict the moment capacities more accurately than previous design rules. This paper presents the details of lateral distortional buckling tests, in particular the features of the lateral buckling test rig, the results and the comparisons. It also includes the results of detailed studies into the mechanical properties and residual stresses of LSBs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract: The LiteSteel Beam (LSB) is a new cold-formed hollow flange channel section produced using dual electric resistance welding and automated continuous roll-forming technologies. The innovative LSB sections have many beneficial characteristics and are commonly used as flexural members in building construction. However, limited research has been undertaken on the shear behaviour of LSBs. Therefore a detailed investigation including both numerical and experimental studies was undertaken to investigate the shear behaviour of LSBs. Finite element models of LSBs in shear were developed to simulate the nonlinear ultimate strength behaviour of LSBs including their elastic buckling characteristics, and were validated by comparing their results with experimental test results. Validated finite element models were then used in a detailed parametric study into the shear behaviour of LSBs. The parametric study results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of torsionally rigid rectangular hollow flanges while considerable post-buckling strength was also observed. This paper therefore proposes improved shear strength design rules for LSBs within the current cold-formed steel code guidelines. It presents the details of the parametric study and the new shear strength equations. The new equations were also developed based on the direct strength method. The proposed shear strength equations have the potential to be used with other conventional cold-formed steel sections such as lipped channel sections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is a new cold-formed hollow flange channel section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. In addition to this unique geometry, the LSB sections also have unique characteristics relating to their stress-strain curves, residual stresses, initial geometric imperfections and hollow flanges that are not encountered in conventional hot-rolled and cold-formed steel channel sections. An experimental study including 20 section moment capacity tests was therefore conducted to investigate the behaviour and strength of LSB flexural members. The presence of inelastic reserve bending capacity in these beams was investigated in detail although the current design rules generally limit the section moment capacities of cold-formed steel members to their first yield moments. The ultimate moment capacities from the tests were compared with the section moment capacities predicted by the current cold-formed and hot-rolled steel design standards. It was found that compact and non-compact LSB sections have greater moment capacities than their first yield moments. The current cold-formed steel design standards were found to be conservative in predicting the section moment capacities of compact and non-compact LSB sections while the hot-rolled steel design standards were able to better predict them. This paper has shown that suitable modifications are needed to the current design rules to allow the inclusion of available inelastic bending capacities of LSBs in design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using its patented dual electric resistance welding and automated continuous roll-forming technologies. The LSB has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. Its flexural strength for intermediate spans is governed by lateral distortional buckling characterised by simultaneous lateral deflection, twist and web distortion. Recent research on LSBs has mainly focussed on their lateral distortional buckling behaviour under uniform moment conditions. However, in practice, LSB flexural members are subjected to non-uniform moment distributions and load height effects as they are often under transverse loads applied above or below their shear centre. These loading conditions are known to have significant effects on the lateral buckling strength of beams. Many steel design codes have adopted equivalent uniform moment distribution and load height factors based on data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The non-uniform moment distribution and load height effects of transverse loading on cantilever LSBs, and the suitability of the current design modification factors to include such effects are not known. This paper presents a numerical study based on finite element analyses of the elastic lateral buckling strength of cantilever LSBs subject to transverse loading, and the results. The applicability of the design modification factors from various steel design codes was reviewed, and suitable recommendations are presented for cantilever LSBs subject to transverse loading.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The metal strip used in roll forming has often been preprocessed by (tension or roller) leveling or by skin-pass rolling, and as a consequence, may contain residual stresses. These stresses are not well observed by the tensile test, but could have a significant effect on the bending and springback behavior. With the advent of improved process design techniques for roll forming, including advanced finite element techniques, the need for precise material property data has become important. The major deformation mode of roll forming is that of bending combined with unloading and reverse bending, and hence property data derived from bend tests could be more relevant than that from tensile testing.

This work presents a numerical study on the effect of skin passing on the material behavior of stainless steel strip in pure bending and tension. A two dimensional (2-D) numerical model was developed using Abaqus Explicit to analyze the affect of skin passing on the residual stress profile across a section for various working conditions. The deformed meshes and their final stress fields were then imported as pre-defined fields into Abaqus Standard, and the post-skin passing material behavior in pure bending was determined. The results show that a residual stress profile is introduced into the steel strip during skin passing, and that its shape and stress level depend on the overall thickness reduction as well as the number of rolling passes used in the skin passing process. The material behavior in bending and the amount of springback changed significantly depending on the skin pass condition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The common grades of steel used in roll forming are: hot rolled carbon steel, high strength low alloy and recovery annealed cold rolled sheet. These steels are prone to ageing and are often skin passed and/or roller leveled to eliminate ageing as it can lead to problems in forming. In roll forming, shape defects such as bow, twist and camber are considered to be related to very small plastic strains in the longitudinal direction and hence knowledge of the material properties in the elastic plastic transition range is necessary if the process is to be modelled accurately. Previous studies with aluminium have indicated that skin pass rolling can lead to residual stresses in the strip. In this work, the study was extended to aged carbon steel and to the effect of roller leveling on both aged material and strip that had been given a light cold rolling to simulate a skin pass treatment. The results suggest that roller leveling reduced the magnitude of residual stresses resulting from skin pass rolling.

The significant differences observed between tensile and bending test results, at and near, the elastic plastic transition reinforces the need to consider bending properties when assessing the effect of prior processing on strip for roll forming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, advanced high strength steels (AHSS) have been used in a wide range of automotive applications; they may have property variations through the thickness and the properties may also be dependent of prior processing including pre-straining. In order to model forming processes precisely using, for example, finite element analysis, it is important that material input data should adequately reflect these effects. It is known that shape defects in roll forming are related to small strains in material that has undergone prior deformation in a different strain path. Much research has already been performed on the change in the Young’s Modulus once a steel sheet has been plastically deformed,however many of these tests have only been conducted using tensile testing, and therefore may not take into account differences in compressive and tensile unloading. This research investigates the effect of tensile pre-straining on bending behaviour for various types of material;in bending, one half of the sheet will load and unload in compression and hence experience deformation under a reversed stress. Four different materials were pre-strained in tension with 1%, 3%, 7%, 11% and 25% elongation. Using a free bending test, moment curvature diagrams were obtained for bending and unloading. The results showed that the characteristics of the moment curvature diagram depended on the degree of pre-straining; more highly strained samples showed an earlier elastic-plastic transformation and a decreased Young's Modulus during unloading. This was compared to previous literature results using only tensile tests. Our results could influence the modeling of springback in low tension sheet operations, such as roll forming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bending and reverse bending are the dominant material deformations in roll forming, and hence property data derived from bend tests could be more relevant than tensile test data for numerical simulation of a roll forming process. Recent investigations have shown that residual stresses change the material behavior close to the yield in a bending test. So, residual stresses introduced during prior steel processing operations may affect the roll forming process, and therefore they need to be included in roll forming simulations to achieve improved model accuracy. Measuring the residual stress profile experimentally is time consuming and has limited accuracy while analytical models that are available require detailed information about the pre-processing conditions that is generally not available for roll forming materials. The main goal of this study is to develop an inverse routine that determines a residual stress profile through the material thickness based on experimental pure bend test data. A numerical model of the skin passing (temper rolling) process is performed to introduce a residual stress profile in DP780 steel sheet. The skin passed strips are used in a pure bending simulation to record moment-curvature data and this data is then applied in an inverse analysis to predict the residual stress profile in the material. Comparison of the residual stress profile predicted by the inverse routine with that calculated by finite element analysis (FEA) indicates an inverse approach combined with pure bend test may present an alternative to predict residual stresses in sheet metals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O atual ambiente competitivo, onde baixo custo, alta qualidade e um grau crescente de customização são exigências para a sobrevivência das empresas, tem influenciado as ações dos profissionais de manutenção com vistas ao aprimoramento das políticas de manutenção. Como resultado, tem-se na área de manutenção industrial, uma grande quantidade de métodos, software, modelos e ferramentas de gestão disponíveis. Dentre eles, dois métodos se destacam: o RCM (Reliability Centered Maintenance ou Manutenção Centrada em Confiabilidade), de origem norte-americana, e a TPM (Total Productive Maintenance ou Manutenção Produtiva Total), de origem japonesa. A TPM promove a integração total entre homem, máquina e empresa, onde a manutenção dos meios de produção passa a constituir uma responsabilidade de todos. A utilização da TPM contempla a implementação de pilares de sustentação, sendo um deles, a manutenção planejada. Entretanto, a TPM não especifica a estratégia a ser adotada pela manutenção planejada. O RCM é uma metodologia lógica de procedimentos que objetiva estabelecer uma manutenção preditiva e preventiva para alcançar, de maneira efetiva e eficiente, os níveis de segurança e confiabilidade requeridas para cada equipamento. Considerando um ambiente com a TPM já implementada, o objetivo deste trabalho é a melhoria do pilar Manutenção Planejada da TPM através da utilização do RCM para nortear as estratégias de manutenção em empresas industriais. A sistemática proposta é ilustrada através de um estudo de caso na indústria de conformação de metais.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cold roll forming of thin-walled sections is a very useful process in the sheet metal industry. However, the conventional method for the design and manufacture of form-rolls, the special tooling used in the cold roll forming process, is a very time consuming and skill demanding exercise. This thesis describes the establishment of a stand-alone minicomputer based CAD/CAM system for assisting the design and manufacture of form-rolls. The work was undertaken in collaboration with a leading manufacturer of thin-walled sections. A package of computer programs have been developed to provide computer aids for every aspect of work in form-roll design and manufacture. The programs have been successfully implemented, as an integrated CAD/CAM software system, on the ICL PERQ minicomputer with graphics facilities. Thus, the developed CAD/CAM system is a single-user workstation, with software facilities to help the user to perform the conventional roll design activities including the design of the finished section, the flower pattern, and the form-rolls. A roll editor program can then be used to modify, if required, the computer generated roll profiles. As far as manufacturing is concerned, a special-purpose roll machining program and postprocessor can be used in conjunction to generate the NC control part-programs for the production of form-rolls by NC turning. Graphics facilities have been incorporated into the CAD/CAM software programs to display drawings interactively on the computer screen throughout all stages of execution of the CAD/CAM software. It has been found that computerisation can shorten the lead time in all activities dealing with the design and manufacture of form-rolls, and small or medium size manufacturing companies can gain benefits from the CAD/CM! technology by developing, according to its own specification, a tailor-made CAD/CAM software system on a low cost minicomputer.