64 resultados para Flavobacterium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petrochemical plastics/polymers are a common feature of day to day living as they occur in packaging, furniture, mobile phones, computers, construction equipment etc. However, these materials are produced from non-renewable materials and are resistant to microbial degradation in the environment. Considerable research has therefore been carried out into the production of sustainable, biodegradable polymers, amenable to microbial catabolism to CO2 and H2O. A key group of microbial polyesters, widely considered as optimal replacement polymers, are the Polyhydroxyalkaonates (PHAs). Primary research in this area has focused on using recombinant pure cultures to optimise PHA yields, however, despite considerable success, the high costs of pure culture fermentation have thus far hindered the commercial viability of PHAs thus produced. In more recent years work has begun to focus on mixed cultures for the optimisation of PHA production, with waste incorporations offering optimal production cost reductions. The scale of dairy processing in Ireland, and the high organic load wastewaters generated, represent an excellent potential substrate for bioconversion to PHAs in a mixed culture system. The current study sought to investigate the potential for such bioconversion in a laboratory scale biological system and to establish key operational and microbial characteristics of same. Two sequencing batch reactors were set up and operated along the lines of an enhanced biological phosphate removal (EBPR) system, which has PHA accumulation as a key step within repeated rounds of anaerobic/aerobic cycling. Influents to the reactors varied only in the carbon sources provided. Reactor 1 received artificial wastewater with acetate alone, which is known to be readily converted to PHA in the anaerobic step of EBPR. Reactor 2 wastewater influent contained acetate and skim milk to imitate a dairy processing effluent. Chemical monitoring of nutrient remediation within the reactors as continuously applied and EBPR consistent performances observed. Qualitative analysis of the sludge was carried out using fluorescence microscopy with Nile Blue A lipophillic stain and PHA production was confirmed in both reactors. Quantitative analysis via HPLC detection of crotonic acid derivatives revealed the fluorescence to be short chain length Polyhydroxybutyrate, with biomass dry weight accumulations of 11% and 13% being observed in reactors 1 and 2, respectively. Gas Chromatography-Mass Spectrometry for medium chain length methyl ester derivatives revealed the presence of hydroxyoctanoic, -decanoic and -dodecanoic acids in reactor 1. Similar analyses in reactor 2 revealed monomers of 3-hydroxydodecenoic and 3-hydroxytetradecanoic acids. Investigation of the microbial ecology of both reactors as conducted in an attempt to identify key species potentially contributing to reactor performance. Culture dependent investigations indicated that quite different communities were present in both reactors. Reactor 1 isolates demonstrated the following species distributions Pseudomonas (82%), Delftia acidovorans (3%), Acinetobacter sp. (5%) Aminobacter sp., (3%) Bacillus sp. (3%), Thauera sp., (3%) and Cytophaga sp. (3%). Relative species distributions among reactor 2 profiled isolates were more evenly distributed between Pseudoxanthomonas (32%), Thauera sp (24%), Acinetobacter (24%), Citrobacter sp (8%), Lactococcus lactis (5%), Lysinibacillus (5%) and Elizabethkingia (2%). In both reactors Gammaproteobacteria dominated the cultured isolates. Culture independent 16S rRNA gene analyses revealed differing profiles for both reactors. Reactor 1 clone distribution was as follows; Zooglea resiniphila (83%), Zooglea oryzae (2%), Pedobacter composti (5%), Neissericeae sp. (2%) Rhodobacter sp. (2%), Runella defluvii (3%) and Streptococcus sp. (3%). RFLP based species distribution among the reactor 2 clones was as follows; Runella defluvii (50%), Zoogloea oryzae (20%), Flavobacterium sp. (9%), Simplicispira sp. (6%), Uncultured Sphingobacteria sp. (6%), Arcicella (6%) and Leadbetterella bysophila (3%). Betaproteobacteria dominated the 16S rRNA gene clones identified in both reactors. FISH analysis with Nile Blue dual staining resolved these divergent findings, identifying the Betaproteobacteria as dominant PHA accumulators within the reactor sludges, although species/strain specific allocations could not be made. GC analysis of the sludge had indicated the presence of both medium chain length as well short chain length PHAs accumulating in both reactors. In addition the cultured isolates from the reactors had been identified previously as mcl and scl PHA producers, respectively. Characterisations of the PHA monomer profiles of the individual isolates were therefore performed to screen for potential novel scl-mcl PHAs. Nitrogen limitation driven PHA accumulation in E2 minimal media revealed a greater propensity among isoates for mcl-pHA production. HPLC analysis indicated that PHB production was not a major feature of the reactor isolates and this was supported by the low presence of scl phaC1 genes among PCR screened isolates. A high percentage distribution of phaC2 mcl-PHA synthase genes was recorded, with the majority sharing high percentage homology with class II synthases from Pseudomonas sp. The common presence of a phaC2 homologue was not reflected in the production of a common polymer. Considerable variation was noted in both the monomer composition and ratios following GC analysis. While co-polymer production could not be demonstrated, potentially novel synthase substrate specificities were noted which could be exploited further in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report, for the first time, extensive biologically-mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (~2%) within the sludge bed and fixed-film biofilms. 4’, 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4-1.5 kg COD m-3 d-1 and hydraulic retention times of 8-24 hours, while phosphate removal efficiency ranged from 28-78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12˚C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina Miseq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterised polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The addition of commercial nitrifying bacterial products has resulted in significant improvement of nitrification efficiency in recirculating aquaculture systems (RAS). We developed two nitrifying bacterial consortia (NBC) from marine and brackish water as start up cultures for immobilizing commercialized nitrifying bioreactors for RAS. In the present study, the community compositions of the NBC were analyzed by universal 16S rRNA gene and bacterial amoA gene sequencing and fluorescence in situ hybridization (FISH). This study demonstrated that both the consortia involved autotrophic nitrifiers, denitrifiers as well as heterotrophs. Abundant taxa of the brackish water heterotrophic bacterial isolates were Paenibacillus and Beijerinckia spp. whereas in the marine consortia they were Flavobacterium, Cytophaga and Gramella species. The bacterial amoA clones were clustered together with high similarity to Nitrosomonas sp. and uncultured beta Proteobacteria. FISH analysis detected ammonia oxidizers belonging to b subclass of proteobacteria and Nitrosospira sp. in both the consortia, and Nitrosococcus mobilis lineage only in the brackish water consortium and the halophilic Nitrosomonas sp. only in the marine consortium. However, nitrite oxidizers, Nitrobacter sp. and phylum Nitrospira were detected in both the consortia. The metabolites from nitrifiers might have been used by heterotrophs as carbon and energy sources making the consortia a stable biofilm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition and variability of heterotrophic bacteria along the shelf sediments of south west coast of India and its relationship with the sediment biogeochemistry was investigated. The bacterial abundance ranged from 1.12 x 103 – 1.88 x 106 CFU g-1 dry wt. of sediment. The population showed significant positive correlation with silt (r = 0.529, p< 0.05), organic carbon (OC) (r = 0.679, p< 0.05), total nitrogen (TN) (r = 0.638, p< 0.05), total protein (TPRT) (r = 0.615, p< 0.05) and total carbohydrate (TCHO) (r = 0.675, p< 0.05) and significant negative correlation with sand (r = -0.488, p< 0.05). Community was mainly composed of Bacillus, Alteromonas, Vibrio, Coryneforms, Micrococcus, Planococcus, Staphylococcus, Moraxella, Alcaligenes, Enterobacteriaceae, Pseudomonas, Acinetobacter, Flavobacterium and Aeromonas. BIOENV analysis explained the best possible environmental parameters i.e., carbohydrate, total nitrogen, temperature, pH and sand at 50m depth and organic matter, BPC, protein, lipid and temperature at 200m depth controlling the distribution pattern of heterotrophic bacterial population in shelf sediments. The Principal Component Analysis (PCA) of the environmental variables showed that the first and second principal component accounted for 65% and 30.6% of the data variance respectively. Canonical Correspondence Analysis (CCA) revealed a strong correspondence between bacterial distribution and environmental variables in the study area. Moreover, non-metric MDS (Multidimensional Scaling) analysis demarcated the northern and southern latitudes of the study area based on the bioavailable organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is believed that the exposure of organisms to harsh climate conditions may select for differential enzymatic activities, making the surviving organisms a very promising source for bioprospecting. Soil bacteria play an important role in degradation of organic matter, which is mostly due to their ability to decompose cellulose-based materials. This work focuses on the isolation and identification of cellulolytic bacteria from soil found in two environments with stressful climate conditions (Antarctica and the Brazilian semi-arid caatinga). Cellulolytic bacteria were selected using enrichments at high and low temperatures (4 or 60A degrees C) in liquid media (trypic soy broth-TSB and minimum salt medium-MM) supplemented with cellulose (1%). Many of the isolates (119 out of 254-46.9%) displayed the ability to degrade carboxymethyl-cellulose, indicating the presence of endoglucolytic activity, while only a minority of these isolates (23 out of 254-9.1%) showed exoglucolytic activity (degradation of avicel). The obtained isolates revealed a preferential endoglucolytic activity according to the temperature of enrichments. Also, the identification of some isolates by partial sequencing of the 16S rRNA gene indicated that the Bacteroidetes (e.g., Pedobacter, Chryseobacterium and Flavobacterium) were the main phylum of cellulolytic bacteria isolated from soil in Antarctica; the Firmicutes (e.g., Bacillus) were more commonly isolated from samples from the caatinga; and Actinobacteria were found in both types of soil (e.g., Microbacterium and Arthrobacter). In conclusion, this work reports the isolation of bacteria able to degrade cellulose-based material from soil at very low or very high temperatures, a finding that should be further explored in the search for cellulolytic enzymes to be used in the bioenergy industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite, D = 7.9 min; (vii) mixture of hydrogen peroxide (2.2%) plus peracetic acid (0.45%), D = 5.5 min. Conclusion The contact time of 180 min of the system with the mixture of H2O2+ peracetic acid, a total theoretical reduction of 6 log10 cycles was attained in the water purified storage tank and distribution loop. The contact time between the water purification system (WPS) and the sanitary agents should be reviewed to reach sufficient bioburden reduction (over 6 log10).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background A typical purification system that provides purified water which meets ionic and organic chemical standards, must be protected from microbial proliferation to minimize cross-contamination for use in cleaning and preparations in pharmaceutical industries and in health environments. Methodology Samples of water were taken directly from the public distribution water tank at twelve different stages of a typical purification system were analyzed for the identification of isolated bacteria. Two miniature kits were used: (i) identification system (api 20 NE, Bio-Mérieux) for non-enteric and non-fermenting gram-negative rods; and (ii) identification system (BBL crystal, Becton and Dickson) for enteric and non-fermenting gram-negative rods. The efficiency of the chemical sanitizers used in the stages of the system, over the isolated and identified bacteria in the sampling water, was evaluated by the minimum inhibitory concentration (MIC) method. Results The 78 isolated colonies were identified as the following bacteria genera: Pseudomonas, Flavobacterium and Acinetobacter. According to the miniature kits used in the identification, there was a prevalence of isolation of P. aeruginosa 32.05%, P. picketti (Ralstonia picketti) 23.08%, P. vesiculares 12.82%,P. diminuta 11.54%, F. aureum 6.42%, P. fluorescens 5.13%, A. lwoffi 2.56%, P. putida 2.56%, P. alcaligenes 1.28%, P. paucimobilis 1.28%, and F. multivorum 1.28%. Conclusions We found that research was required for the identification of gram-negative non-fermenting bacteria, which were isolated from drinking water and water purification systems, since Pseudomonas genera represents opportunistic pathogens which disperse and adhere easily to surfaces, forming a biofilm which interferes with the cleaning and disinfection procedures in hospital and industrial environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

F. psychrophilum is the causative agent of Bacterial Cold Water Disease (BCW) and Rainbow Trout Fry Syndrome (RTFS). To date, diagnosis relies mainly on direct microscopy or cultural methods. Direct microscopy is fast but not very reliable, whereas cultural methods are reliable but time-consuming and labor-intensive. So far fluorescent in situ hybridization (FISH) has not been used in the diagnosis of flavobacteriosis but it has the potential to rapidly and specifically detect F. psychrophilum in infected tissues. Outbreaks in fish farms, caused by pathogenic strains of Flavobacterium species, are increasingly frequent and there is a need for reliable and cost-effective techniques to rapidly diagnose flavobacterioses. This study is aimed at developing a FISH that could be used for the diagnosis of F. psychrophilum infections in fish. We constructed a generic probe for the genus Flavobacterium ("Pan-Flavo") and two specific probes targeting F. psychrophilum based on 16S rRNA gene sequences. We tested their specificity and sensitivity on pure cultures of different Flavobacterium and other aquatic bacterial species. After assessing their sensitivity and specificity, we established their limit of detection and tested the probes on infected fresh tissues (spleen and skin) and on paraffin-embedded tissues. The results showed high sensitivity and specificity of the probes (100% and 91% for the Pan-Flavo probe and 100% and 97% for the F. psychrophilum probe, respectively). FISH was able to detect F. psychrophilum in infected fish tissues, thus the findings from this study indicate this technique is suitable as a fast and reliable method for the detection of Flavobacterium spp. and F. psychrophilum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microbial population in samples of basalt drilled from the north of the Australian Antarctic Discordance (AAD) during Ocean Drilling Program Leg 187 were studied using deoxyribonucleic acid (DNA)-based methods and culturing techniques. The results showed the presence of a microbial population characteristic for the basalt environment. DNA sequence analysis revealed that microbes grouping within the Actinobacteria, green nonsulfur bacteria, the Cytophaga/Flavobacterium/Bacteroides (CFB) group, the Bacillus/Clostridium group, and the beta and gamma subclasses of the Proteobacteria were present in the basalt samples collected. The most dominant phylogenetic group, both in terms of the number of sequences retrieved and the intensities of the DNA bands obtained with the denaturing gradient gel electrophoresis analysis, was the gamma Proteobacteria. Enrichment cultures showed phylogenetic affiliation with the Actinobacteria, the CFB group, the Bacillus/Clostridium group, and the alpha, beta, gamma, and epsilon subclasses of the Proteobacteria. Comparison of native and enriched samples showed that few of the microbes found in native basalt samples grew in the enrichment cultures. Only seven clusters, two clusters within each of the CFB and Bacillus/Clostridium groups and five clusters within the gamma Proteobacteria, contained sequences from both native and enriched basalt samples with significant similarity. Results from cultivation experiments showed the presence of the physiological groups of iron reducers and methane producers. The presence of the iron/manganese-reducing bacterium Shewanella was confirmed with DNA analysis. The results indicate that iron reducers and lithotrophic methanogenic Archaea are indigenous to the ocean crust basalt and that the methanogenic Archaea may be important primary producers in this basaltic environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heparinase I from Flavobacterium heparinum has important uses for elucidating the complex sequence heterogeneity of heparin-like glycosaminoglycans (HLGAGs). Understanding the biological function of HLGAGs has been impaired by the limited methods for analysis of pure or mixed oligosaccharide fragments. Here, we use methodologies involving MS and capillary electrophoresis to investigate the sequence of events during heparinase I depolymerization of HLGAGs. In an initial step, heparinase I preferentially cleaves exolytically at the nonreducing terminal linkage of the HLGAG chain, although it also cleaves internal linkages at a detectable rate. In a second step, heparinase I has a strong preference for cleaving the same substrate molecule processively, i.e., to cleave the next site toward the reducing end of the HLGAG chain. Computer simulation showed that the experimental results presented here from analysis of oligosaccharide degradation were consistent with literature data for degradation of polymeric HLGAG by heparinase I. This study presents direct evidence for a predominantly exolytic and processive mechanism of depolymerization of HLGAG by heparinase I.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heparin has been used as a clinical anticoagulant for more than 50 years, making it one of the most effective pharmacological agents known. Much of heparin's activity can be traced to its ability to bind antithrombin III (AT-III). Low molecular weight heparin (LMWH), derived from heparin by its controlled breakdown, maintains much of the antithrombotic activity of heparin without many of the serious side effects. The clinical significance of LMWH has highlighted the need to understand and develop chemical or enzymatic means to generate it. The primary enzymatic tools used for the production of LMWH are the heparinases from Flavobacterium heparinum, specifically heparinases I and II. Using pentasaccharide and hexasaccharide model compounds, we show that heparinases I and II, but not heparinase III, cleave the AT-III binding site, leaving only a partially intact site. Furthermore, we show herein that glucosamine 3-O sulfation at the reducing end of a glycosidic linkage imparts resistance to heparinase I, II, and III cleavage. Finally, we examine the biological and pharmacological consequences of a heparin oligosaccharide that contains only a partial AT-III binding site. We show that such an oligosaccharide lacks some of the functional attributes of heparin- and heparan sulfate-like glycosaminoglycans containing an intact AT-III site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diversity of the culturable microbial communities was examined in two sponge species-Pseudoceratina clavata and Rhabdastrella globostellata. Isolates were characterized by 16S rRNA gene sequencing and phylogenetic analysis. The bacterial community structures represented in both sponges were found to be similar at the phylum level by the same four phyla in this study and also at a finer scale at the species level in both Firmicutes and Alphaproteobacteria. The majority of the Alphaproteobacteria isolates were most closely related to isolates from other sponge species including alpha proteobacterium NW001 sp. and alpha proteobacterium MBIC3368. Members of the low %G + C gram-positive (phylum Firmicutes), high %G + C gram-positive (phylum Actinobacteria), and Cytophaga-Flavobacterium-Bacteroides (phylum Bacteroidetes) phyla of domain Bacteria were also represented in both sponges. In terms of culturable organisms, taxonomic diversity of the microbial community in the two sponge species displays similar structure at phylum level. Within phyla, isolates often belonged to the same genus-level monophyletic group. Community structure and taxonomic composition in the two sponge species P. clavata and Rha. globostellata share significant features with those of other sponge species including those from widely separated geographical and climatic regions of the sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. This study explores such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. The surface water samples were taken at Helgoland Island about 40 km offshore in the southeastern North Sea in the German Bight at the station 'Kabeltonne' (54° 11.3' N, 7° 54.0' E) between the main island and the minor island, Düne (German for 'dune') using small research vessels (http://www.awi.de/en/expedition/ships/more-ships.html). Water depths at this site fluctuate from 6 to 10 m over the tidal cycle. Samples were processed as described previously (Teeling et al., 2012; doi:10.7554/eLife.11888.001) in the laboratory of the Biological Station Helgoland within less than two hours after sampling. Assessment of absolute cell numbers and bacterioplankton community composition was carried out as described previously (Thiele et al., 2011; doi:10.1016/B978-0-444-53199-5.00056-7). To obtain total cell numbers, DNA of formaldehyde fixed cells filtered on 0.2 mm pore sized filters was stained with 4',6-diamidino-2-phenylindole (DAPI). Fluorescently labeled cells were subsequently counted on filter sections using an epifluores-cence microscope. Likewise, bacterioplankton community composition was assessed by catalyzedreporter deposition fluorescence in situ hybridization (CARD-FISH) of formaldehyde fixed cells on 0.2 mm pore sized filters.