953 resultados para Flat-plate


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aims to study the drying of cashew-nut pulp with different lay-out of dryers using conventional and solar energy. It concerns with the use of exceeding of the regional raw material and the suitable knowledge for the applicability of the drying systems as pathway for food conservation. Besides, it used renewable sources as solar energy to dry these agroindustrial products. Runs were carried out using a conventional tray-dryer with temperature, air velocity control and cashew slice thickness of 55°C, 65°C, 75°C; 3.0; 4.5, 6.0 m s-1; 1.0; 1.5 and 2.0 cm, respectively, in order to compare the studied systems. To evaluate the conventional tray-dryer, it was used a diffusional model of 2nd Fick´s law, where the drying curves were quite well fitted to an infinite flat plate design. For the drying runs where the room temperature had no control, it was developed a phenomenological-mathematical model for the solar dryer with indirect radiation under natural and forced convection based on material and energy balances of the system. Besides, it was carried out assays in the in natura as well as dehydrated, statistic analysis of the experimental drying data, sensorial analysis of the final dry product and a simplified economical analysis of the systems studied

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is concerned with the numerical solutions of time dependent two-dimensional incompressible flows. By using the primitive variables of velocity and pressure, the Navier-Stokes and mass conservation equations are solved by a semi-implicit finite difference projection method. A new bounded higher order upwind convection scheme is employed to deal with the non-linear (advective) terms. The procedure is an adaptation of the GENSMAC (J. Comput. Phys. 1994; 110: 171-186) methodology for calculating confined and free surface fluid flows at both low and high Reynolds numbers. The calculations were performed by using the 2D version of the Freeflow simulation system (J. Comp. Visual. Science 2000; 2:199-210). In order to demonstrate the capabilities of the numerical method, various test cases are presented. These are the fully developed flow in a channel, the flow over a backward facing step, the die-swell problem, the broken dam flow, and an impinging jet onto a flat plate. The numerical results compare favourably with the experimental data and the analytical solutions. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work are presented results from numerical simulations performed with the ANSYS-CFX (R) code. We have studied a radial diffuser flow case, which is the main academic problem used to study the flow behavior on flat plate valves. The radial flow inside the diffuser has important behavior such as the turbulence decay downstream and recirculation regions inside the valve flow channel due to boundary layer detachment. These flow structures are present in compressor reed valve configurations, influencing to a greater extent the compressor efficiency. The main target of the present paper was finding the simulation set-up (computational domain, boundary conditions and turbulence model) that better fits with experimental data published by Tabatabai and Pollard. The local flow turbulence and velocity profiles were investigated using four different turbulence models, two different boundary conditions set-up, two different computational domains and three different flow conditions (Re-in - Reynolds number at the diffuser inlet). We used the Reynolds stress (BSL); the k-epsilon; the RNG k-epsilon; and the shear stress transport (SST) k-omega turbulence models. The performed analysis and comparison of the computational results with experimental data show that the choice of the turbulence model, as well as the choice of the other computational conditions, plays an important role in the results physical quality and accuracy. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of non-darcian transient film condensation adjacent to a vertical flat plate embedded in a porous medium has been considered. The governing equation for the boundary layer thickness was obtained by an integral method and solved approximately by the method of integral relations. It is shown that the results are in good agreement with those obtained exactly by the method of characteristics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of non-darcian transient film condensation adjacent to a vertical flat plate embedded in a porous medium has been considered. The governing equation for the boundary layer thickness was obtained by an integral method and solved approximately by the method of integral relations. It is shown that the results are in good agreement with those obtained exactly by the method of characteristics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flutter is an in-flight vibration of flexible structures caused by energy in the airstream absorbed by the lifting surface. This aeroelastic phenomenon is a problem of considerable interest in the aeronautic industry, because flutter is a potentially destructive instability resulting from an interaction between aerodynamic, inertial, and elastic forces. To overcome this effect, it is possible to use passive or active methodologies, but passive control adds mass to the structure and it is, therefore, undesirable. Thus, in this paper, the goal is to use linear matrix inequalities (LMIs) techniques to design an active state-feedback control to suppress flutter. Due to unmeasurable aerodynamic-lag states, one needs to use a dynamic observer. So, LMIs also were applied to design a state-estimator. The simulated model, consists of a classical flat plate in a two-dimensional flow. Two regulators were designed, the first one is a non-robust design for parametric variation and the second one is a robust control design, both designed by using LMIs. The parametric uncertainties are modeled through polytopic uncertainties. The paper concludes with numerical simulations for each controller. The open-loop and closed-loop responses are also compared and the results show the flutter suppression. The perfomance for both controllers are compared and discussed. Copyright © 2006 by ABCM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study investigates the use of solar heterogeneous photocatalyis (TiO2) for the destruction of [D-Leu]-Microcystin-LR, powerful toxin of widespread occurrence within cyanobacteria blooms. We extracted [D-Leu]-Microcystin-LR from a culture of Microcystis spp. and used a flat plate glass reactor coated with TiO2 (Degussa, P25) for the degradation studies. The irradiance was measured during the experiments with the aid of a spectroradiometer. After the degradation experiments, toxin concentrations were determined by HPLC and mineralization by TOC analyses. Acute and chronic toxicities were, quantified using mice and phosphatase inhibition in vitro assays, respectively. According to the performed experiments, 150 min were necessary to reduce the toxin concentration to the WHO's guideline for drinking water (from 10 to 1 mu g L-1) and to mineralize 90% of the initial carbon content. Another important finding is that solar heterogeneous photocatalysis was a destructive process indeed, not only for the toxin, but also for the other extract components and degradation products generated. Moreover, toxicity tests using mice have shown that the acute effect caused by the initial sample was removed. However, tests using the phosphatase enzyme indicated that it may be formed products capable of inducing chronic effects on mammals. The performed experiments indicate the feasibility of using solar heterogeneous photocatalysis for treating contaminated water with [D-Leu]-Microcystin-LR, not only due to its destruction, but also to the significant removal of organic matter and acute toxicity that can be achieved. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, the Specification for Aluminum Structures (Aluminum Association, 2010) shows thin-walled aluminum plate sections with radii greater than eight inches have a lower compressive strength capacity than a flat plate with the same width and thickness. This inconsistency with intuition, which suggests any degree of folding a plate should increase its elastic buckling strength, inspired this study. A wide range of curvatures are studied—from a nearly flat plate to semi-circular. To quantify the curvature, a single non-dimensional parameter is used to represent all combinations of width, thickness and radius. Using the finite strip method (CU-FSM), elastic local buckling stresses are investigated. Using the ratio of stress values of curved plates compared to flat plates of the same size, equivalent plate-buckling coefficients are calculated. Using this data, nonlinear regression analyses are performed to develop closed form equations for five different edge support conditions. These equations can be used to calculate the elastic critical buckling stress for any curved aluminum section when the geometric properties (width, thickness, and radius) and the material properties (elastic modulus and Poisson’s ratio) are known. This procedure is illustrated in examples, each showing the applicability of the derived equations to geometries other than those investigated in this study and also providing comparisons with theoretically exact numerical analysis results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Gene therapy applications require safe and efficient methods for gene transfer. Present methods are restricted by low efficiency and short duration of transgene expression. In vivo electroporation, a physical method of gene transfer, has evolved as an efficient method in recent years. We present a protocol involving electroporation combined with a long-acting promoter system for gene transfer to the lung. METHODS: The study was designed to evaluate electroporation-mediated gene transfer to the lung and to analyze a promoter system that allows prolonged transgene expression. A volume of 250 microl of purified plasmid DNA suspended in water was instilled into the left lung of anesthetized rats, followed by left thoracotomy and electroporation of the exposed left lung. Plasmids pCiKlux and pUblux expressing luciferase under the control of the cytomegalovirus immediate-early promoter/enhancer (CMV-IEPE) or human polyubiquitin c (Ubc) promoter were used. Electroporation conditions were optimized with four pulses (200 V/cm, 20 ms at 1 Hz) using flat plate electrodes. The animals were sacrificed at different time points up to day 40, after gene transfer. Gene expression was detected and quantified by bioluminescent reporter imaging (BLI) and relative light units per milligram of protein (RLU/mg) was measured by luminometer for p.Pyralis luciferase and immunohistochemistry, using an anti-luciferase antibody. RESULTS: Gene expression with the CMV-IEPE promoter was highest 24 h after gene transfer (2932+/-249.4 relative light units (RLU)/mg of total lung protein) and returned to baseline by day 3 (382+/-318 RLU/mg of total lung protein); at day 5 no expression was detected, whereas gene expression under the Ubc promoter was detected up to day 40 (1989+/-710 RLU/mg of total lung protein) with a peak at day 20 (2821+/-2092 RLU/mg of total lung protein). Arterial blood gas (PaO2), histological assessment and cytokine measurements showed no significant toxicity neither at day 1 nor at day 40. CONCLUSIONS: These results provide evidence that in vivo electroporation is a safe and effective tool for non-viral gene delivery to the lungs. If this method is used in combination with a long-acting promoter system, sustained transgene expression can be achieved.