931 resultados para Fish production
Resumo:
Although Sri Lanka is endowed with favourable climatic conditions and resources for breeding and rearing ornamental fish for export, a considerable number of ornamental fish producers as well as exporters have given up the industry within a relatively short period of time. This study was conducted to understand the present status of the industry and to identify the problems that have caused these failures. The study was conducted from March to December in the year 2007 and covered Colombo, Kaluthara, Polonnaruwa, Negombo, Wattala, Rathnapura, Avissawella, Kandy, Kegalle, Padukka, and Gampaha areas, where ornamental fish culture is known to be popular. The survey was carried out by interviewing ornamental fish farmers using a structured questionnaire survey that was designed to elicit the required information. Most (75%) of those surveyed were identified as small scale farmers. A majority (56%) of them used only cement tanks for their culture activities. Only 47% of farmers had proper technical knowledge or training on fish culture while 42% directly supplied their fish products to the expo1iers. The most important constraints identified by the study were as follows: (1) the sale price offish not changing in keeping with the increase in the material costs of production - Feed, cement, sand, transport and labour - in recent years. (2) Difficulty to find export markets for newcomers to enter the export market. (3) Lack of quality brooders and information on the most suitable fish varieties for the different climatic and water conditions in different areas in the country (3) Feed availability and cost. (4) Lack of adequate knowledge and technical support with regard to disease control and water quality management. (5) Difficulty to survive in the off season. (6) Difficulty in obtaining credit for expansion and the lack of sufficient involvement of responsible authorities in overcoming all these identified constraints.
Resumo:
Of all the great lakes, Lake Victoria has the highest population concentration on its fringes. This has resulted into serious human impacts on the ecosystem through intense agricultural activities (cultivation, livestock and over fishing), sporadic settlements, urbanization and industrial establishments. The consequences have been loss of animals and plant life, deforestation and general land degradation, pollution, loss of water quality and clean air. Aquatic life has become endangered and less guaranteeing to continued fish production. Awareness workshops and general talks have been done to a few selected communities by the lakes landing sites and in the catchment area to mitigate the deteriorating environmental conditions. Naturally the situation calls for reversal to the increasing stress of the ecosystem. As a result, every water body surveyed put forward some mitigation suggestions
Resumo:
Biological diversity of an ecosystem is considered a reliable measure of the state of health of the ecosystem. In Uganda's large lakes, the Victoria and Kyoga, the past three decades have been characterized by profound changes in fish species composition following the introduction of the piscivorous Nile perch (Oguto-Ohwayo 1990). Over 300 haplochromine cichlid species comprising a wide range of trophic groups were lost along with a host of non-cichlid fishes which occupied virtually all available ecological niches and in the lakes (Witte 1992). A second major ecological event has been the gradual nutrient enrichment of the water bodies (eutrophication) from diffuse and point sources, while at the same time pollutants have also gained entrance into the water systems in pace with indusfrial development and human population increases in the lake basins. Eutrophication and pollution have drastically altered the physical and-chemical character of the water medium in which different fauna and flora thrive. In Lake Victoria these alterations have resulted in changes of algal species composition from pristine community dominated by chlorophytes and diatoms (Melosira etc) to one composed largely of blue-green algae or Cyanobacteria (Microcystis, Anabaena, Planktolyngbya etc) (Mugidde 1993, Hecky 1993).
Resumo:
The Lake Kyoga complex lies towards the north of Uganda, at 311 altitude of 3,400 feet, between 10 and 2° north of the Equator. The lake is extremely elongate and digitate, shallow (1 metre-7 metres), and almost all the coast-line is swampy, with many papyrus beds. Floating islands of sud are a feature. At its eastern extremity, it breaks up into many swampy, isolated lakes. The Nile from its source at Jinja enters Lake Kyoga on its southern side, and leaves the lake at its western extremity, and winds on through to Lake Albert and the Sudan. The Kyoga/Salisbury /Kwania complex covers 2,354 sq. km. of water. Geologically, the lake is a series of flooded river valleys, probably resulting from the uplifting of the western edge of the basin in the Pliocene and the Pleistocene ages aud the endemic fish fauna is very similar to that of Lake Victoria, although Kyoga has not developed the species flocks of haplochromis which characterise the larger lake. The Victoria fauna extends down-stream of Lake Kyoga to the Murchison Falls on the Nile, which forms an almost complete barrier between Kyoga and the typical nilotic fauna of the Nile below Murchison and Lake Albert.
Resumo:
Protein deficient diets are a standard way of life in many parts of East Africa;this of course tends to result in shorter life expectancy and chronic ill-health. Population increase is sufficiently high to outdistance the economic gains that may be made in various fields. With recurrent shortages of basic commodities not only in East Africa, but in many parts of the world, it is becoming increasingly clear that agricultural production practices must be maximised rapidly in order to meet the world's constantly expanding need for food. Here in East Africa, while our food requirements can be met most of the time, our protein requirements are far from being met. Yields from traditional fishery resources, must therefore be increased. The farming of fish (aquaculture)adds a new dimension to food production in general and high quality protein production in particular, in that it can be incorporated into other agricultural production activities.
Resumo:
Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species' ecology. We couple a physical-biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30-60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28-89%.
Resumo:
The fisheries sector is crucial to the Bangladeshi economy and wellbeing, accounting for 4.4% of national Gross Domestic Product (GDP) and 22.8% of agriculture sector production, and supplying ca.60% of the national animal protein intake. Fish is vital to the 16 million Bangladeshis living near the coast, a number that has doubled since the 1980s. Here we develop and apply tools to project the long term productive capacity of Bangladesh marine fisheries under climate and fisheries management scenarios, based on downscaling a global climate model, using associated river flow and nutrient loading estimates, projecting high resolution changes in physical and biochemical ocean properties, and eventually projecting fish production and catch potential under different fishing mortality targets. We place particular interest on Hilsa shad (Tenualosa ilisha), which accounts for ca.11% of total catches, and Bombay duck (Harpadon nehereus), a low price fish that is the second highest catch in Bangladesh and is highly consumed by low income communities. It is concluded that the impacts of climate change, under greenhouse emissions scenario A1B, are likely to reduce the potential fish production in the Bangladesh Exclusive Economic Zone (EEZ) by less than 10%. However, these impacts are larger for the two target species. Under sustainable management practices we expect Hilsa shad catches to show a minor decline in potential catch by 2030 but a significant (25%) decline by 2060. However, if overexploitation is allowed catches are projected to fall much further, by almost 95% by 2060, compared to the Business as Usual scenario for the start of the 21st century. For Bombay duck, potential catches by 2060 under sustainable scenarios will produce a decline of less than 20% compared to current catches. The results demonstrate that management can mitigate or exacerbate the effects of climate change on ecosystem productivity.
Resumo:
The status of fisheries and seasonal variation in fish diversity in the Kodungallur-Azhikode Estuary (KAE) were investigated. Total annual average fish production in the estuary declined significantly to 908.6 t with average yield of 5.4 kg ha-1 day-1, when compared to earlier study; where 2747 t was reported. During the present study, 60 species of finfishes (belonging to 34 finfish families), 6 species of penaeid shrimps, 2 species of palaemonid prawns, 2 species of crabs (4 crustacean families), 6 species of bivalves and 2 species of edible oysters (3 molluscan families) were noticed. Finfishes were the major group that contributed 69.62% of total fishery in the estuary and crustaceans (23.47%), bivalves (6.84%) and oysters (0.07%) also formed good fishery. Many of the fish species in the estuary were observed as threatened (Horabagrus brachysoma, Channa striatus, Channa marulius, Clarias batrachus, Heteropneustes fossilis and Wallago attu). The major fishing gears employed in the estuary were gillnets, cast nets, stake nets, scoop nets, ring nets, traps and Chinese dip nets. Gillnets contributed 45% of the total fish catch. Gillnets also showed highest catch per unit effort (CPUE) of 6.91 kg h -1 followed by cast nets (1.85 kg h -1), Chinese dip nets (3.20 kg h -1), stake nets (3.05 kg h -1), ring nets (1.27 kg h -1), hooks and lines (1.35 kg h -1) and scoop nets (0.92 kg h -1). The study implies that temporal changes in fish landing pattern of the KAE was mainly due to environmental variability, habitat modification and fish migration; under the influence of south-west monsoon and anthropogenic activities in the KAE. Results of the study suggest that spatio-temporal variations in the fish community structure could be an indicator for anthropogenic stress and it should be considered for restoration programmes.
Resumo:
The present work aims to update a series of information about the regional fishing production, by presenting and characterizing the contribution of the different sub-systems of the Amazon basin to the catch landed at the main fishing market of Manaus, Brazil, from 1994 to 1996. Collectors specifically hired for this function registered key information on the fisheries. Thirty nine types or groups of fish were found in the fishing production landed. Jaraqui (Semaprochilodus spp.), curimatã (Prochilodus nigricans), pacu (Myleinae), matrinchã (Brycon cephalus), sardine (Triportheus spp.), aracu (Anostomidae) and tambaqui (Colossoma macropomum) were the most important items during three consecutive years. In 1994 these items summed up 91.6% of the total production; in 1995 and 1996 these values were, respectively, 85.3% and 86.4% of the total production. Tambaqui landed decreased remarkably during the period 1976-1996. There was a strong seasonal component in the production of the main species; jaraqui and matrinchã were mostly landed between April and June, while curimatã, pacu, and sardine were mostly landed during the dry season. Other important items showed a strong inter-annual variation in their production. The fishing production landed came mostly from the sub-system of the Purus River (around 30% of the total production). The subsystem of the Medium-Solimões contributed with an average of 15% and the sub-systems of the Madeira, Lower-Solimões, Upper-Amazon and Juruá, together contributed with 11.5% of the total production landed. Finally, the remaining sub-systems contributed with only 7.6% of the production.
Resumo:
"Dingell-Johnson project F-6-R Louisiana."
Resumo:
The speculation that climate change may impact on sustainable fish production suggests a need to understand how these effects influence fish catch on a broad scale. With a gross annual value of A$ 2.2 billion, the fishing industry is a significant primary industry in Australia. Many commercially important fish species use estuarine habitats such as mangroves, tidal flats and seagrass beds as nurseries or breeding grounds and have lifecycles correlated to rainfall and temperature patterns. Correlation of catches of mullet (e.g. Mugil cephalus) and barramundi (Lates calcarifer) with rainfall suggests that fisheries may be sensitive to effects of climate change. This work reviews key commercial fish and crustacean species and their link to estuaries and climate parameters. A conceptual model demonstrates ecological and biophysical links of estuarine habitats that influences capture fisheries production. The difficulty involved in explaining the effect of climate change on fisheries arising from the lack of ecological knowledge may be overcome by relating climate parameters with long-term fish catch data. Catch per unit effort (CPUE), rainfall, the Southern Oscillation Index (SOI) and catch time series for specific combinations of climate seasons and regions have been explored and surplus production models applied to Queensland's commercial fish catch data with the program CLIMPROD. Results indicate that up to 30% of Queensland's total fish catch and up to 80% of the barramundi catch variation for specific regions can be explained by rainfall often with a lagged response to rainfall events. Our approach allows an evaluation of the economic consequences of climate parameters on estuarine fisheries. thus highlighting the need to develop forecast models and manage estuaries for future climate chan e impact by adjusting the quota for climate change sensitive species. Different modelling approaches are discussed with respect to their forecast ability. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The fundamental purpose of fisheries management is to ensure sustainable production over time from fish stocks, preferably through regulatory and enhancement actions that promote economic and social well being of the fishers and industries that depend on the resource. To achieve this purpose, management authorities must design, justify and administer (enforce) a collection of restraints on fishing and fishery-related activities. Productivity and management of the fisheries should be based on the understanding that they are complex and dynamic systems. Physical, chemical and biological components support a community of organisms that is unique to the these systems. All these components are in constant change but mainly dictated by human interference in the water body ecosystem.