888 resultados para Finding minutess
Resumo:
Background A cancer diagnosis elicits greater distress than any other medical diagnosis, and yet very few studies have evaluated the efficacy of structured online self-help therapeutic programs to alleviate this distress. This study aims to assess the efficacy over time of an internet Cognitive Behaviour Therapy (iCBT) intervention (‘Finding My Way’) in improving distress, coping and quality of life for individuals with a recent diagnosis of early stage cancer of any type. Methods/Design The study is a multi-site Randomised Controlled Trial (RCT) seeking to enrol 188 participants who will be randomised to either the Finding My Way Intervention or an attention-control condition. Both conditions are delivered online; with 6 modules released once per week, and an additional booster module released one month after program-completion. Participants complete online questionnaires on 4 occasions: at baseline (immediately prior to accessing the modules); post-treatment (immediately after program-completion); then three and six months later. Primary outcomes are general distress and cancer-specific distress, with secondary outcomes including Health-Related Quality of Life (HRQoL), coping, health service utilisation, intervention adherence, and user satisfaction. A range of baseline measures will be assessed as potential moderators of outcomes. Eligible participants are individuals recently diagnosed with any type of cancer, being treated with curative intent, aged over 18 years with sufficient English language literacy, internet access and an active email account and phone number. Participants are blinded to treatment group allocation. Randomisation is computer generated and stratified by gender. Discussion Compared to the few prior published studies, Finding My Way will be the first adequately powered trial to offer an iCBT intervention to curatively treated patients of heterogeneous cancer types in the immediate post-diagnosis/treatment period. If found efficacious, Finding My Way will assist with overcoming common barriers to face-to-face therapy in a cost-effective and accessible way, thus helping to reduce distress after cancer diagnosis and consequently decrease the cancer burden for individuals and the health system. Trial registration Australian New Zealand Clinical Trials Registry ACTRN12613000001796 16.10.13
Resumo:
An essay, succeeding the Finding Country exhibition, which details three teaching studios for Queensland University of Technology Architectural students; associated with the slowly developed idea about a symmetrical context between City and Country, and into another now titled 'Burning City'. The first studio introduced fire as a practice tool of Country and to establish a case for Country to be brought into context with the City. Both the second and third studios engaged students to extend the '50 per cent emptying concept' from the first studio. The second studio moved past spiritual anxiety as a matter of manage production and to engage at an architectural scale. The third studio was accompanied by an axonometric drawing and the enquiry stemmed from the context between burnt Country and emptied City. The next frontier for this project is to progress the strategy into real architecture and actions on the City. This will require confrontation with Country as a genuine origin.
Resumo:
There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.
Resumo:
This pictorial is a visual pondering of the potential hidden within the mundane aspects of everyday life. Grounded in the theoretical concepts of ‘design futuring’ and ‘undesign’, it is framed in a speculative context and seeks to propose avenues for thought within the design space. This paper is not a reflection of a design process, nor is it presenting new and novel concept designs. Instead, this paper combines visuals and literature to encourage the reader into a mode of theoretical and personal reflection on the open possibilities for the future of design - through the reimagining of the mundane.
Resumo:
The problem of determining whether a Tanner graph for a linear block code has a stopping set of a given size is shown to be NT-complete.
Resumo:
Tanner Graph representation of linear block codes is widely used by iterative decoding algorithms for recovering data transmitted across a noisy communication channel from errors and erasures introduced by the channel. The stopping distance of a Tanner graph T for a binary linear block code C determines the number of erasures correctable using iterative decoding on the Tanner graph T when data is transmitted across a binary erasure channel using the code C. We show that the problem of finding the stopping distance of a Tanner graph is hard to approximate within any positive constant approximation ratio in polynomial time unless P = NP. It is also shown as a consequence that there can be no approximation algorithm for the problem achieving an approximation ratio of 2(log n)(1-epsilon) for any epsilon > 0 unless NP subset of DTIME(n(poly(log n))).
Resumo:
It is important to identify the ``correct'' number of topics in mechanisms like Latent Dirichlet Allocation(LDA) as they determine the quality of features that are presented as features for classifiers like SVM. In this work we propose a measure to identify the correct number of topics and offer empirical evidence in its favor in terms of classification accuracy and the number of topics that are naturally present in the corpus. We show the merit of the measure by applying it on real-world as well as synthetic data sets(both text and images). In proposing this measure, we view LDA as a matrix factorization mechanism, wherein a given corpus C is split into two matrix factors M-1 and M-2 as given by C-d*w = M1(d*t) x Q(t*w).Where d is the number of documents present in the corpus anti w is the size of the vocabulary. The quality of the split depends on ``t'', the right number of topics chosen. The measure is computed in terms of symmetric KL-Divergence of salient distributions that are derived from these matrix factors. We observe that the divergence values are higher for non-optimal number of topics - this is shown by a `dip' at the right value for `t'.
Resumo:
An axis-parallel box in $b$-dimensional space is a Cartesian product $R_1 \times R_2 \times \cdots \times R_b$ where $R_i$ (for $1 \leq i \leq b$) is a closed interval of the form $[a_i, b_i]$ on the real line. For a graph $G$, its boxicity is the minimum dimension $b$, such that $G$ is representable as the intersection graph of (axis-parallel) boxes in $b$-dimensional space. The concept of boxicity finds application in various areas of research like ecology, operation research etc. Chandran, Francis and Sivadasan gave an $O(\Delta n^2 \ln^2 n)$ randomized algorithm to construct a box representation for any graph $G$ on $n$ vertices in $\lceil (\Delta + 2)\ln n \rceil$ dimensions, where $\Delta$ is the maximum degree of the graph. They also came up with a deterministic algorithm that runs in $O(n^4 \Delta )$ time. Here, we present an $O(n^2 \Delta^2 \ln n)$ deterministic algorithm that constructs the box representation for any graph in $\lceil (\Delta + 2)\ln n \rceil$ dimensions.
Resumo:
Frequent episode discovery is a popular framework for mining data available as a long sequence of events. An episode is essentially a short ordered sequence of event types and the frequency of an episode is some suitable measure of how often the episode occurs in the data sequence. Recently,we proposed a new frequency measure for episodes based on the notion of non-overlapped occurrences of episodes in the event sequence, and showed that, such a definition, in addition to yielding computationally efficient algorithms, has some important theoretical properties in connecting frequent episode discovery with HMM learning. This paper presents some new algorithms for frequent episode discovery under this non-overlapped occurrences-based frequency definition. The algorithms presented here are better (by a factor of N, where N denotes the size of episodes being discovered) in terms of both time and space complexities when compared to existing methods for frequent episode discovery. We show through some simulation experiments, that our algorithms are very efficient. The new algorithms presented here have arguably the least possible orders of spaceand time complexities for the task of frequent episode discovery.
Resumo:
In this article, we describe our ongoing efforts in addressing the environment and energy challenges facing the world today. Tapping solar thermal energy seems to be the right choice for a country like India. We look at three solar-thermal technologies in the laboratory — water purification/distillation, Stirling engine, and air-conditioning/refrigeration.
Resumo:
In this paper, we explore fundamental limits on the number of tests required to identify a given number of ``healthy'' items from a large population containing a small number of ``defective'' items, in a nonadaptive group testing framework. Specifically, we derive mutual information-based upper bounds on the number of tests required to identify the required number of healthy items. Our results show that an impressive reduction in the number of tests is achievable compared to the conventional approach of using classical group testing to first identify the defective items and then pick the required number of healthy items from the complement set. For example, to identify L healthy items out of a population of N items containing K defective items, when the tests are reliable, our results show that O(K(L - 1)/(N - K)) measurements are sufficient. In contrast, the conventional approach requires O(K log(N/K)) measurements. We derive our results in a general sparse signal setup, and hence, they are applicable to other sparse signal-based applications such as compressive sensing also.
Resumo:
The Lovasz θ function of a graph, is a fundamental tool in combinatorial optimization and approximation algorithms. Computing θ involves solving a SDP and is extremely expensive even for moderately sized graphs. In this paper we establish that the Lovasz θ function is equivalent to a kernel learning problem related to one class SVM. This interesting connection opens up many opportunities bridging graph theoretic algorithms and machine learning. We show that there exist graphs, which we call SVM−θ graphs, on which the Lovasz θ function can be approximated well by a one-class SVM. This leads to a novel use of SVM techniques to solve algorithmic problems in large graphs e.g. identifying a planted clique of size Θ(n√) in a random graph G(n,12). A classic approach for this problem involves computing the θ function, however it is not scalable due to SDP computation. We show that the random graph with a planted clique is an example of SVM−θ graph, and as a consequence a SVM based approach easily identifies the clique in large graphs and is competitive with the state-of-the-art. Further, we introduce the notion of a ''common orthogonal labeling'' which extends the notion of a ''orthogonal labelling of a single graph (used in defining the θ function) to multiple graphs. The problem of finding the optimal common orthogonal labelling is cast as a Multiple Kernel Learning problem and is used to identify a large common dense region in multiple graphs. The proposed algorithm achieves an order of magnitude scalability compared to the state of the art.
Resumo:
In this paper we establish that the Lovasz theta function on a graph can be restated as a kernel learning problem. We introduce the notion of SVM-theta graphs, on which Lovasz theta function can be approximated well by a Support vector machine (SVM). We show that Erdos-Renyi random G(n, p) graphs are SVM-theta graphs for log(4)n/n <= p < 1. Even if we embed a large clique of size Theta(root np/1-p) in a G(n, p) graph the resultant graph still remains a SVM-theta graph. This immediately suggests an SVM based algorithm for recovering a large planted clique in random graphs. Associated with the theta function is the notion of orthogonal labellings. We introduce common orthogonal labellings which extends the idea of orthogonal labellings to multiple graphs. This allows us to propose a Multiple Kernel learning (MKL) based solution which is capable of identifying a large common dense subgraph in multiple graphs. Both in the planted clique case and common subgraph detection problem the proposed solutions beat the state of the art by an order of magnitude.