714 resultados para Fiber optics


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Novel surface plasmonic optical fiber sensors have been fabricated using multiple coatings deposited on a lapped section of a single mode fiber. UV laser irradiation processing with a phase mask produces a nano-scaled surface relief grating structure resembling nano-wires. The resulting individual corrugations produced by material compaction are approximately 20 μm long with an average width at half maximum of 100 nm and generate localized surface plasmons. Experimental data are presented that show changes in the spectral characteristics after UV processing, coupled with an overall increase in the sensitivity of the devices to surrounding refractive index. Evidence is presented that there is an optimum UV dosage (48 joules) over which no significant additional optical change is observed. The devices are characterized with regards to change in refractive index, where significantly high spectral sensitivities in the aqueous index regime are found, ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. © 2013 Optical Society of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present what is to our knowledge the first demonstration of a tunable fiber Bragg grating device in polymer optical fiber that utilizes a thin-film resistive heater deposited on the surface of the fiber. The polymer fiber was coated via photochemical deposition of a Pd/Cu metallic layer with a procedure induced by vacuum-ultraviolet radiation at room temperature. The resulting device, when wavelength tuned via joule heating, underwent a wavelength shift of 2 nm for a moderate input power of 160 mW, a wavelength to input power coefficient of-13.4 pm/mW, and a time constant of 1.7 s-1. © 2007 Optical Society of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper a microwave photonic filter using superstructured fiber Bragg grating and dispersive fiber is investigated. A theoretical model to describe the transfer function of the filter taking into consideration the spectral width of light source is established. Experiments are carried out to verify the theoretical analysis. Both theoretical and experimental results indicate that due to chromatic dispersion the source spectral width introduces an additional power penalty to the microwave photonic response of the filter. © 2005 Optical Society of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have measured the optical phase sensitivity of fiber based on poly(methyl methacrylate) under near-single-mode conditions at 632.8 nm wavelength. The elongation sensitivity is 131±3 × 105 rad m-1 and the temperature sensitivity is -212±26 rad m -1 K-1. These values are somewhat larger than those for silica fiber and are consistent with the values expected on the basis of the bulk polymer properties. © 2005 Optical Society of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we present extensive comparisons between numerical modelling and experimental measurements of the transmission performance of either CSRZ-ASK or CSRZ-DPSK modulation formats for 40-Gb/s WDM ULH systems on UltraWave™ fiber spans with all-Raman amplification. We numerically optimised the amplification and the signal format parameters for both CSRZ-DPSK and CSRZ-ASK formats. Numerical and experimental results show that, in a properly optimized transmission link, the DPSK format permits to double the transmission distance (for a given BER level) with respect to the ASK format, while keeping a substantial OSNR margin (on ASK modulation) after the propagation in the fiber line. Our comparison between numerical and experimental results permits to identify what is the most suitable BER estimator in assessing the transmission performance when using the DPSK format. © 2007 Optical Society of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A method of precise characterization of surface nanoscale axial photonics (SNAP) structures with a reference fiber is proposed, analyzed, and demonstrated experimentally. The method is based on simultaneous coupling of a microfiber to a SNAP structure under test and to a reference optical fiber. Significant reduction of measurement errors associated with the environmental temperature variations and technical noise of the spectrum analyzer is demonstrated. The achieved measurement precision of the effective radius variation of the SNAP structure is 0.2 Å.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A creep resistant Mg alloy MRI 230D was subjected to laser surface treatment using Nd:YAG laser equipped with a fiber optics beam delivery system in argon atmosphere. The laser surface treatment produced a fine dendritic microstructure and this treatment was beneficial for the corrosion and wear resistance of the alloy. Long-term linear polarisation resistance and Electrochemical Impedance Spectroscopy measurements confirmed that the polarisation resistance values of laser treated material were twice as high as that for the untreated material. This improved behaviour was due to the finer and more homogenous microstructure of the laser treated surface. The laser treatment also increased surface hardness two times and reduced the wear rate by 25% due to grain refinement and solid solution strengthening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Information forms the basis of modern technology. To meet the ever-increasing demand for information, means have to be devised for a more efficient and better-equipped technology to intelligibly process data. Advances in photonics have made their impact on each of the four key applications in information processing, i.e., acquisition, transmission, storage and processing of information. The inherent advantages of ultrahigh bandwidth, high speed and low-loss transmission has already established fiber-optics as the backbone of communication technology. However, the optics to electronics inter-conversion at the transmitter and receiver ends severely limits both the speed and bit rate of lightwave communication systems. As the trend towards still faster and higher capacity systems continues, it has become increasingly necessary to perform more and more signal-processing operations in the optical domain itself, i.e., with all-optical components and devices that possess a high bandwidth and can perform parallel processing functions to eliminate the electronic bottleneck.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Waveguides were fabricated on GeGaSEr chalcogenide glass using ultrafast laser inscription method. The thermal diffusion model is discussed for understanding the light matter interaction and shown the effect of net-fluence in waveguide formation on chalcogenide glass. (C) 2012 Optical Society of America

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanical behaviour of composite materials differs from that of conventional structural materials owing to their heterogeneous and anisotropic nature. Different types of defects and anomalies get induced in these materials during the fabrication process. Further, during their service life, the components made of composite materials develop different types of damage. The performance and life of such components is governed by the combined effect of all these defects and damage. While porosity, voids, inclusions etc., are some defects those can get induced during the fabrication of composites, matrix cracks, interface debonds, delaminations and fiber breakage are major types of service induced damage which are of concern. During the service life of components made of composites, one type of damage can grow and initiate another type of damage. For example, matrix cracks can gradually grow to the interface and initiate debonds. Interface debonds in a particular plane can lead to delaminations. Consequently, the combined effect of different types of distributed damage causes the failure of the component. A set of non-destructive evaluation (NDE) methods is well established for testing conventional metallic materials. Some of them can also be utilized for composite materials as they are, and in some cases with a little different approach or modification. Ultrasonics, Radiography, Thermography, Fiber Optics, Acoustic Emision Techniques etc., to name a few. Detection, evaluation and characterization of different types of defects and damage encountered in composite materials and structures using different NDE tools is discussed briefly in this paper.