991 resultados para Fermi level
Resumo:
We present a comparative study of the low temperature electrical transport properties of the carbon matrix containing iron nanoparticles and the films. The conductivity of the nanoparticles located just below the metal-insulator transition exhibits metallic behavior with a logarithmic temperature dependence over a large temperature interval. The zero-field conductivity and the negative magnetoresistance, showing a characteristic upturn at liquid helium temperature, are consistently explained by incorporating the Kondo relation and the two dimensional electron-electron interaction. The films, in contrast, exhibit a crossover of the conductivity from power-law dependence at high temperatures to an activated hopping law dependence in the low temperature region. The transition is attributed to changes in the energy dependence of the density of states near the Fermi level. The observed magnetoresistance is discussed in terms of quantum interference effect on a three-dimensional variable range hopping mechanism.
Resumo:
Adsorption of oxygen on Ni, Cu, Pd, Ag, and Au surfaces has been investigated by employing UV and X-ray photoelectron spectrscopy as well as electron energy loss spectroscopy (EELS). Molecularly chemisorbed (singlet) oxygen is found on Ni, Cu, Ag, and Au surfaces showing features such as stabilization of the rB* orbital, destabilization of the .nu orbital, higher O(1s) binding energy than the atomic species, and a band 2-3 eV below the Fermi level due to metal d-O(2p)u* interaction. 0-0 and metal-oxygen stretching frequencies have been observed in EELS. Physical adsorption of O2 is found to occur on Pd and Ni surfaces, only at high exposures in the latter case. Physical adsorption and multilayer condensation of CO, on metal surfaces are distinguished by characteristic relaxation shifts in UPS as well as O(1s) binding energies. Adsorption of CO on a Ni surface covered with presorbed atomic oxygen gives rise to C02.
Resumo:
The electronic structure of sodium tungsten bronzes NaxWO3 is investigated by high-resolution angle-resolved photoemission spectroscopy (ARPES). The ARPES spectra measured in both insulating and metallic phases of NaxWO3 reveals the origin of metal-insulator transition (MIT) in sodium tungsten bronze system. It is found that in insulating NaxWO3 the states near the Fermi level (E-F) are localized due to the strong disorder caused by the random distribution of Na+ ions in WO3 lattice. Due to the presence of disorder and long-range Coulomb interaction of conduction electrons, a soft Coulomb gap arises, where the density of states vanishes exactly at E-F. In the metallic regime the states near E-F are populated and the Fermi level shifts upward rigidly with increasing electron doping (x). Volume of electron-like Fermi surface (FS) at the Gamma(X) point of the Brillouin zone gradually increases with increasing Na concentration due to W 5d t(2g) band filling. A rigid shift of the Fermi energy is found to give a qualitatively good description of the Fermi surface evolution. As we move from bulk-sensitive to more surface sensitive photon energy, we found the emergence of Fermi surfaces at X(M) and M(R) point similar to the one at the Gamma(X) point in the metallic regime, suggesting that the reconstruction of surface was due to rotation/deformation of WO6 octahedra.
Resumo:
Using density functional theory, we investigated the position preference and diffusion mechanisms of interstitial oxygen ions in lanthanum silicate La9.33Si6O26, which is an apatite-structured oxide and a promising candidate electrolyte material for solid oxide fuel cells. The reported lanthanum vacancies were explicitly taken into account by theoretically determining their arrangement with a supercell model. The most stable structures and the formation energies of oxygen interstitials were determined for each charged state. It was found that the double-negatively charged state is stable over a wide range of the Fermi level, and that the excess oxygen ions form split interstitials with the original oxygen ions, while the neutral and the single-negatively charged states preferably form molecular oxygen. These species were found near the lanthanum vacancy site. The theoretically determined migration pathway along the c-axis essentially follows an interstitialcy mechanism. The obtained migration barrier is sensitive to the charge state, and is also affected by the lanthanum vacancy. The barrier height of the double-negatively charged state was calculated to be 0.58 eV for the model structure, which is consistent with the measured activation energy.
Resumo:
With high-resolution photoemission spectroscopy measurements, the density of states (DOS) near the Fermi level (E-F) of double perovskite Sr2FeMoO6 having different degrees of Fe/Mo antisite disorder has been investigated with varying temperature. The DOS near E-F showed a systematic depletion with increasing degree of disorder, and recovered with increasing temperature. Altshuler-Aronov (AA) theory of disordered metals well explains the dependences of the experimental results. Scaling analysis of the spectra provides experimental indication for the functional form of the AA DOS singularity.
Resumo:
Magnetron sputtering is a promising technique for the growth of oxide materials including ZnO, which allows deposition of films at low temperatures with good electrical properties. The current-voltage (I-P) characteristics of An Schottky contacts on magnetron sputtered ZnO, films have been measured over a temperature range of 278-358K. Both effective barrier height (phi(B,eff)) and ideality factor (n) are found to be a function of temperature, and this behavior has been interpreted on the basis of a Gaussian distribution of barrier heights due to barrier height inhomogeneities that prevail at the interface. Density of states (DOS) near the Fermi level is determined using a model based on the space charge limited current (SCLC). The dispersion in both real and imaginary parts of the dielectric constant at low frequencies, with increase in temperature is attributed to the space charge effect. Complex impedance plots exhibited two semicircles, which corresponds to bulk grains and the grain boundaries. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Scanning tunneling microscopy/spectroscopy studies were carried out on single crystals of colossal magnetoresistive manganite Pr0.68Pb0.32MnO3 at different temperatures in order to probe their spatial homogeneity across the metal-insulator transition temperature TM-I(similar to 255 K). A metallic behavior of the local conductance was observed for temperatures T < TM-I. Zero bias conductance (dI/dV)v=(0), which is directly proportional to the local surface density of states at the Fermi level, shows a single distribution at temperatures T < 200 K suggesting a homogeneous electronic phase at low temperatures. In a narrow temperature window of 200 K < T < TM-I, however, an inhomogeneous distribution of (dI/dV)v=(0) has been observed. This result gives evidence for phase separation in the transition region in this compound.
Resumo:
Scanning tunneling microscopy/spectroscopy studies were carried out on single crystals of colossal magnetoresistive manganite Pr0.68Pb0.32MnO3 at different temperatures in order to probe their spatial homogeneity across the metal-insulator transition temperature TM-I(similar to 255 K). A metallic behavior of the local conductance was observed for temperatures T < TM-I. Zero bias conductance (dI/dV)v=(0), which is directly proportional to the local surface density of states at the Fermi level, shows a single distribution at temperatures T < 200 K suggesting a homogeneous electronic phase at low temperatures. In a narrow temperature window of 200 K < T < TM-I, however, an inhomogeneous distribution of (dI/dV)v=(0) has been observed. This result gives evidence for phase separation in the transition region in this compound.
Resumo:
X-ray Raman scattering and x-ray emission spectroscopies were used to study the electronic properties and phase transitions in several condensed matter systems. The experimental work, carried out at the European Synchrotron Radiation Facility, was complemented by theoretical calculations of the x-ray spectra and of the electronic structure. The electronic structure of MgB2 at the Fermi level is dominated by the boron σ and π bands. The high density of states provided by these bands is the key feature of the electronic structure contributing to the high critical temperature of superconductivity in MgB2. The electronic structure of MgB2 can be modified by atomic substitutions, which introduce extra electrons or holes into the bands. X ray Raman scattering was used to probe the interesting σ and π band hole states in pure and aluminum substituted MgB2. A method for determining the final state density of electron states from experimental x-ray Raman scattering spectra was examined and applied to the experimental data on both pure MgB2 and on Mg(0.83)Al(0.17)B2. The extracted final state density of electron states for the pure and aluminum substituted samples revealed clear substitution induced changes in the σ and π bands. The experimental work was supported by theoretical calculations of the electronic structure and x-ray Raman spectra. X-ray emission at the metal Kβ line was applied to the studies of pressure and temperature induced spin state transitions in transition metal oxides. The experimental studies were complemented by cluster multiplet calculations of the electronic structure and emission spectra. In LaCoO3 evidence for the appearance of an intermediate spin state was found and the presence of a pressure induced spin transition was confirmed. Pressure induced changes in the electronic structure of transition metal monoxides were studied experimentally and were analyzed using the cluster multiplet approach. The effects of hybridization, bandwidth and crystal field splitting in stabilizing the high pressure spin state were discussed. Emission spectroscopy at the Kβ line was also applied to FeCO3 and a pressure induced iron spin state transition was discovered.
Resumo:
Scanning tunneling microscopy/spectroscopy studies were carried out on single crystals of colossal magnetoresistive manganite Pr0. 68Pb0.32MnO3 at different temperatures in order to probe their spatial homogeneity across the metal-insulator transition temperature TM-I(similar to 255 K). A metallic behavior of the local conductance was observed for temperatures T < TM-I. Zero bias conductance (dI/dV)v=(0), which is directly proportional to the local surface density of states at the Fermi level, shows a single distribution at temperatures T < 200 K suggesting a homogeneous electronic phase at low temperatures. In a narrow temperature window of 200 K < T < TM-I, however, an inhomogeneous distribution of (dI/dV)v=(0) has been observed. This result gives evidence for phase separation in the transition region in this compound.
Resumo:
Ga1-xMnxSb crystals are grown with different Mn doping concentrations by the horizontal Bridgman method (x = 0 - 0.04). Optical absorption and photoluminescence studies are carried out in the temperature range 3-300 K. Optical absorption studies reveal that the inter-valence band transition from the spin-orbit split-off band to the light/heavy hole bands is dominant over the fundamental valence band to conduction band absorption. In higher doped crystals, the fundamental absorption peak is merged with the inter-valence band transition and could not be resolved. Photoluminescence measurements in heavily doped crystals reveal the band gap narrowing and band filling effects due to the Fermi level shifting into the valence band.
Resumo:
Ultraviolet and X-ray photoemission spectroscopic (UPS and XPS) studies to characterize the electronic structure of bismuth cuprate superconductor with nominal composition of Bi1.8Pb0.4Sr2Ca2.2Cu3O10 have been carried out. The data clearly shows the metallic emission at the Fermi level (EF). The shoulder (-1.2 eV) near the EF is attributed to the Cu-O derived states. Cu satellite structures observed both in the UPS and XPS show the strongly correlated nature of the Cu 3d electrons. Core level shifts indicate that 3+ and 4+ are the main oxidation of Bi and Pb, respectively. The Pb core lines show two components indicating their inequivalent sites. Core level O 1s spectrum is deconvoluted to show the presence of structurally non-equivalent oxygen sites.
Resumo:
This article is a review of our work related to Raman studies of single layer and bilayer graphenes as a function Fermi level shift achieved by electrochemically top gating a field effect transistor. Combining the transport and in situ Raman studies of the field effect devices, a quantitative understanding is obtained of the phonon renormalization due to doping of graphene. Results are discussed in the light of time dependent perturbation theory, with electron phonon coupling parameter as an input from the density functional theory. It is seen that phonons near and Gamma and K points of the Brillouin zone are renormalized very differently by doping. Further, Gamma-phonon renormalization is different in bilayer graphene as compared to single layer, originating from their different electronic band structures near the zone boundary K-point. Thus Raman spectroscopy is not only a powerful probe to characterize the number of layers and their quality in a graphene sample, but also to quantitatively evaluate electron phonon coupling required to understand the performance of graphene devices.
Resumo:
We study the electronic structure of Sr2RuO4, a noncuprate layered superconductor (T-c=0.93 K), using electron spectroscopy. X-ray photoemission spectroscopy shows that the single particle occupied density of states (DOS) is in fair agreement with the calculated DOS. However, resonant photoemission spectroscopy across the Ru 4p-4d threshold establishes the existence of a correlation satellite to the Ru 4d band. The results indicate substantial charge-transfer character at the Fermi level, with on-site correlations U-dd comparable in magnitude to the Ru-O hopping integral, like the cuprates.
Resumo:
In this paper we have investigated the composition-driven metal-insulator (MI) transitions in two ABO3 classes of perovskite oxides (LaNixCo1-xO3 and NaxTayW1-yO3) in the composition range close to the critical region by using the tunneling technique. Two types of junctions (point-contact and planar) have been used for the investigation covering the temperature range 0.4 K