960 resultados para Feed Efficiency
Resumo:
A growth trial was conducted to estimate the optimum requirement of dietary available phosphorus (P) for black seabream (Sparus macrocephalus) in indoor net cages (1.5x1.0x1.0 m). Triplicate groups of black seabream (11.45 +/- 0.02 g) were fed diets containing graded levels (0.18, 0.36, 0.54, 0.72, 0.89 and 1.07%) of available P to satiation for 8 weeks. The basal diet (diet 1), containing 0.18% available P, was supplemented with graded levels of monosodium phosphate (NaH2PO4 2H(2)O) to formulate five experimental diets. The fish were fed twice daily (08:00 h and 16:00 h) and reared in seawater (salinity, 26-29 g l(-1)) at a temperature of 28 +/- 1 degrees C. Dissolved oxygen during the experiment was above 5 mg l(-1). The specific growth rate (SGR), weight gain (WG), feed efficiency (FE) and protein efficiency ratio (PER) were all significantly improved by dietary phosphorus up to 0.54% (P<0.05) and then leveled off beyond this level. Hepatosomatic index (HSI) was inversely correlated with dietary phosphorus levels (P< 0.05). Efficiency of P utilization stabled in fish fed diets containing 0.18%-0.54% available P and then decreased dramatically with further supplementation of dietary phosphorus. Body composition analysis showed that the whole-body lipid, ash, calcium and phosphorus contents were all significantly affected by dietary available P concentration (P<0.05), however, no significance were found in whole-body calcium/phosphorus (Ca/P) ratios among all the treatments (P>0.05). Dietary phosphorus levels also affected the mineralization of vertebrae, skin and scale (P<0.05). Ca/P ratios in vertebrae and scale were not influenced by dietary P supplementation, while skin Ca/P ratio increased statistically with dietary available P levels (quadratic effect, P<0.001). The blood chemistry analysis showed that dietary available P had distinct effects on enzyme activities of alkaline phosphatase (ALP) and plasma lysozyme (LSZ), as well as contents of triacyglycerol (TG) and total cholesterol (T-CHO) (P<0.05). Broken-line analysis showed maximum weight gain (WG) was obtained at dietary available P concentrations of 0.55%. Quadratic analysis based on P contents in whole fish, vertebrae or scale indicated that the requirements were 0.81, 0.87 and 0.88%, respectively. Signs of phosphorus deficiency were characterized by poor growth, slightly reduced mineralization and an increase in body lipid content. (C) 2008 Published by Elsevier B.V.
Resumo:
The growth and energy budget for F-2 'all-fish' growth hormone gene transgenic common carp Cyprinus carpio of two body sizes were investigated at 29.2 degrees C for 21 days. Specific growth rate, feed intake, feed efficiency, digestibility coefficients of dry matter and protein, gross energy intake (I-E), and the proportion of I-E utilized for heat production (H-E) were significantly higher in the transgenics than in the controls. The proportion of I-E directed to waste products [faecal energy (F-E) and excretory energy loss (Z(E) + U-E) where Z(E) is through the gills and U-E through the kidney], and the proportion of metabolizable energy (M-E) for recovered energy (R-E) were significantly lower in the transgenics than in the controls. The average energy budget equation of transgenic fish was as follows: 100 I-E = 19.3 F-E + 6.0 (Z(E) + U-E) + 45.2 H-E + 29.5 R-E or 100 M-E = 60.5 H-E + 39.5 R-E. The average energy budget equation of the controls was: 100 I-E = 25.2 F-E + 7.4 (Z(E) + U-E) + 35.5 H-E + 31.9 R-E or 100 M-E = 52.7 H-E + 47.3 R-E. These findings indicate that the high growth rate of 'all-fish' transgenic common carp relative to their non-transgenic counterparts was due to their increased feed intake, reduced lose of waste productions and improved feed efficiency. The benefit of the increased energy intake by transgenic fish, however, was diminished by their increased metabolism.
Resumo:
A 11-week growth trial was conducted in a flow-through system with juvenile gibel carp Carassius auratus gibelio to evaluate the effects of gradual replacement of fish meal (FM) by meat and bone meal (MBM) on growth performance, phosphorus (P) and nitrogen (N) loading. Six isonitrogenous (crude protein: 410 g kg(-1)) and isoenergetic (gross energy: 18 kJ g(-1)) diets were formulated. FM was used as the control protein. In the other five diets, 20, 40, 60, 80 and 100% FM protein was substituted with MBM20, MBM40, MBM60, MBM80, MBM100, respectively. Total P content in the diets ranged from 16.0 to 28.3 g kg(-1) and the available P was 5.0-6.6 g kg(-1). The results showed that the best growth was achieved with fish fed on the control diet and MBM20. Final body weight, weight gain, feed efficiency, protein retention efficiency and energy retention efficiency decreased with increased dietary MBM. No significant differences were found in the feeding rate and hepatosomatic index between the groups. Apparent digestibility coefficient (ADC) of dry matter, protein and P decreased with increase in dietary MBM, while there were no significant differences in the ADC of energy. P and N retention decreased linearly while P and N loading increased linearly with the increased dietary MBM levels. No significant differences were observed in the activity of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase, as well as pyruvate kinase in liver or in serum. Total superoxide dismutase activity in MBM20 was significantly higher than that of MBM100.
Resumo:
The nutritional function of monosaccharides, disaccharides and polysaccharides for omnivorous gibel carp and carnivorous Chinese longsnout catfish were investigated and the ability of these two species to utilize carbohydrates was compared. For each species, triplicate groups of fish were assigned to each of five groups of isoenergetic and isonitrogenous experimental diets with different carbohydrate sources: glucose, sucrose, dextrin, soluble starch (acid-modified starch) and alpha-cellulose. The carbohydrates were included at 60 g kg(-1) in Chinese longsnout catfish diets and at 200 g kg(-1) in gibel carp diets. A growth trial was carried out in a recirculation system at 27.8 +/- 1.9 degrees C for 8 weeks. The results showed that fish with different food habits showed difference in the utilization of carbohydrate sources. For gibel carp, better specific growth rate (SGR) and feed efficiency (FE) were observed in fish fed diets containing soluble starch and cellulose, but for Chinese longsnout catfish, better SGR and FE were observed in fish fed diets containing dextrin and sucrose. Apparent digestibility coefficient of dry matter (ADC(d)) and apparent digestibility coefficient of energy (ADC(e)) were significantly affected by dietary carbohydrate sources in gibel carp. ADC(d) and ADC(e) significantly decreased as dietary carbohydrate complexity increased in Chinese longsnout catfish except that glucose diet had medium ADC(d) and ADC(e). In both species, no significant difference of apparent digestibility coefficient of protein was observed between different carbohydrate sources. Dietary carbohydrate sources significantly affected body composition, and liver phosphoenolpyruvate carboxykinase (PEPCK), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME) activities also varied according to dietary carbohydrate complexity. Fish with different food habits showed different abilities to synthesize liver glycogen, and the liver glycogen content in gibel carp was significantly higher than in Chinese longsnout catfish. The influence of carbohydrate source on gluconeogenesis and lipogenesis was also different in the two fish species.
Resumo:
Triplicate groups of gibel carp Carassius auratus gibelio Bloch (initial body weight: 4.89 g) were fed for 8 weeks at 24.8-30.8 degrees C with nine isonitrogenous and isoenergetic diets. The control diet (F1) used white fishmeal (FM) as the sole protein source. In the other eight diets (F2-F9), 40.5-100% of FM protein was substituted by poultry by-product meal (PBM) at 8.5% increments. The specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio, protein retention efficiency and energy retention rate for fish fed PBM diets (F2-F9) were all higher, but not always significantly, than those for fish fed F1. All apparent digestibility coefficients for fish fed PBM diets were lower than those for fish fed F1. Fish fed F1 had a significantly higher hepatosomatic index value than fish fed PBM diets (P < 0.05). No significant (P > 0.05) effect of diet was found in whole-body moisture and fat content. Whole-body protein and energy content for fish fed PBM diets were slightly higher than that for fish fed F1. The optimal replacement level of FM by PBM was estimated by second-order polynomial regression to be 66.5% in protein.
Resumo:
The effect of ration on growth and energy budget of Chinese longsnout catfish was investigated in a growth trial. Fish of initial body weight of 6.5 g were fed at six ration levels (RLs): starvation, 0.8%, 1.6%, 2.4%, 3.2% of body weight per day, and apparent satiation for 8 weeks. Fish were weighed biweekly to adjust feed amount. The results showed that specific growth rate in wet weight, protein and energy increased logarithmically with increased RLs. The relationship of specific growth rate in wet weight (SGRw, % day(-1)) and RL (%) was a decelerating curve: SGRw=-0.62+3.10 Ln(RL+1). The energy budget equation at satiation was: 100 IE=12.94 FE+5.50(ZE+UE)+40.07 HE+41.49 RE, where IE, FE, (ZE+UE), HE, RE are food energy, faecal energy, excretory energy, heat production and recovered energy respectively. Body composition was slightly but significantly affected by ration size except for protein content. The most efficient ration based on the relationship between RL and feed efficiency ratio in energy (FERe) was 1.8% of body weight per day.
Resumo:
Hybrid tilapia weighing 4.34 +/- 0.03 g (mean +/- SE) were reared in seawater at 23.8 to 27.0 degrees C for 8 weeks. The control group was fed to satiation twice a day throughout the experiment. The other three groups were deprived of feed for 1, 2, and 4 weeks, respectively, and then fed to satiation during the refeeding period. At the end of the experiment, fish deprived for 1 week had similar body weights to the controls, whereas fish deprived for 2 and 4 weeks had significantly lower body weights than the controls. During the refeeding period, size-adjusted feed intakes and specific growth rates were significantly higher in deprived fish than in the controls, indicating some compensatory responses in these fish. Feed intake and growth rate upon refeeding were higher the longer the duration of deprivation. No significant differences were found in digestibility, feed efficiency or protein and energy retention efficiency between the deprived and control fish during refeeding, suggesting that hyperphagia was the mechanism responsible for increased growth rates during compensatory growth. During refeeding, relative gains in protein, lipid and ash, as proportions of total body weight gain, did not differ significantly among treatment groups. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Nile tilapia weighing 8.29-11.02 g were fed a practical diet at seven ration levels (starvation, 0.5, 1, 2, 3, 4% body weight per day and satiation) twice a day at 30 degrees C. Feed consumption, apparent digestibility, nitrogenous excretion and growth were determined directly, and heat production was calculated by difference of energy budget. The relationship between specific growth rate in wet weight (SGR(w), percentage per day) and ration size (RL, percentage per day) was a decelerating curve described as SGR(w) = 2.98 (1 - e(-0.61(RL-0.43))). The apparent digestibility coefficients for dry matter and protein showed a decreasing pattern with increasing ration while the apparent digestibility coefficient of energy was not significantly affected by ration size. The proportion of gross energy intake lost in nitrogenous excretion tended to decrease with increasing ration. Feed efficiency was highest, and the proportion of gross energy intake channelled to heat production was lowest, at an intermediate ration level (2% per day). The energy budget at the satiation level was: 100IE = 16.9FE + 1.2(ZE + UE) + 62.3HE + 19.6RE, where IE, FE, (ZE + UE), HE and RE represent gross energy intake, faecal energy, excretory (non-faecal) energy loss, heat production and recovered energy (growth), respectively. (C) 1997 Elsevier Science B.V.
Resumo:
Juvenile (mean +/- SE, 8.6 +/- 0.1 g) white sturgeon Acipenser transmontanus were fed for 8 weeks under one of six feeding regimens: continuously 24 h/d (C24); continuously 12.8 h/d during the day (C12/D), continuously 12.8 h/d at night (C12/N), 6 meals/d (M6), 4 meals/d (M4), and 2 meals/d (M2). Specific growth rate, feed efficiency, and body lipid content were significantly (P < 0.05) affected by the feeding regimen. These variables were highest in the C24 group and lowest in the M2 group; fish in the M6 group showed the second best performance. Specific growth rate and feed efficiency in terms of wet weight in the M6 groups were not significantly different from those in the C24 groups, but specific growth rate in terms of energy and energy retention efficiency were significantly lower. Feeding regimen had no effect on condition factor, hepatosomatic index, coefficient of variation in final body weight, and protein and ash contents. There was no significant difference in these indexes between 12.8-h/d continuous feeding by day or by night. It was concluded that continuous feeding for 24 h/d was the optimum feeding regimen for juvenile white sturgeon.
Resumo:
Two 8-week growth trials were conducted to determine the effect of continuous (CF) versus 2 meals day(-1) (MF) feeding and 30% starch versus 30% glucose diets on the carbohydrate utilization of 9.0-g white sturgeon and 0.56-g hybrid tilapia. The two trials were conducted under similar conditions except that sturgeon were kept at 18.5 degrees C in a flow-through system and tilapia were kept at 26 degrees C in a recirculating system. Significantly (P less than or equal to 0.05) higher specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER), body lipid content and liver glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) activities were observed in the CF than MF sturgeon. Only SGR, FE and PER were higher in sturgeon fed the starch than the glucose diets. Only higher liver G6PDH and malic enzyme (ME) activities were observed in the CF than MF tilapia but higher SGR, FE, PER and liver G6PDH, 6PGDH and ME activities were observed in tilapia fed the starch diet than those fed the glucose diet. This suggested that carbohydrate utilization by sturgeon was more affected by feeding strategy whereas tilapia was more affected by carbohydrate source. Furthermore, white sturgeon can utilize carbohydrates better than hybrid tilapia regardless of feeding strategy and carbohydrate source.
Resumo:
In the European Union the turn towards renewable energy sources has increased the production of biodiesel from rapeseed oil, leaving glycerol (also known as glycerin) as a valuable by-product. For every litre of biodiesel produced, approximately 79 g of crude glycerol are generated. As the biodiesel production grows, the quantity of crude glycerol generated will be considerable and its utilization will become an urgent topic. One possibility is the use of crude glycerol on animal feeds. Glycerol has been evaluated as a dietary energy source for several farm animals, including fish. A study was undertaken to assess the effect of dietary biodiesel-derived glycerol (from rapeseed oil) on the overall growth performance, digestive capacity and metabolic nutrient utilization in juvenile gilthead seabream fed a low fishmeal level diet. Two practical diets were formulated to be isonitrogenous (crude protein, 45.4% DM), isolipidic (18.5% DM) and isoenergetic (gross energy, 21.3 kJ/g DM). The control diet (CTRL) was formulated with intermediate levels of marine-derived proteins (19%). In the same basal formulation, 5% glycerol (GLY) was incorporated at the expenses of wheat. Each dietary treatment was tested in triplicate tanks over 63 days, with 20 gilthead seabream (Sparus aurata), with a mean initial body weight (IBW) of 27.9 0.12 g. At the end of the trial, fish fed the CTRL diet reached a final body weight of 84.3 2.2 g (more than 3-fold increase of initial body weight). Fish fed the GLY diet showed a significantly higher (P<0.05) growth, expressed in terms of final body weight and specific growth rate. Voluntary feed intake was similar between the two treatments, but both feed efficiency and protein efficiency ratio were significantly improved (P<0.05) in fish fed the GLY diet. Dietary glycerol had no effect (P>0.05) on the apparent digestibility of protein. In comparison to the control treatment, dietary glycerol significantly improved (P<0.05) protein and fat retention. Activities of digestive enzymes were significantly affected by the various dietary treatments. Fish fed the GLY diet showed an enhanced activity of alkaline phosphatase (ALP) and pepsin, while activities of lipase and leucine-alanine peptidase (LAP) were little affected by dietary glycerol. Fish show the ability to use crude glycerol as a dietary energy substrate.
Resumo:
The present study was undertaken to elucidate the nutritional and pathological changes associated with aflatoxin B1 toxicity in Penaeus monodon and to determine the efficacy of vitamins E and K, and Amrita Bindu, herbal mixture in ameliorating the toxicity of AFB1. The main objectives the study is to document the pathological and immunological changes in P.monodon fed with AFB1 incorporated diets and to delineate the histological and ultrastructural changes and determine the presence of AFB1 residue in the shrimp body, to evaluate the growth performance of feed efficiency in P. monodon post larvae fed AFB1 added diets, to assess the interactive effect of heavy metals like copper and cadmium at sub-lethal levels in P. monodon postlarve fed AFB1 added diets, to decipher the ameliorative action of Vitamins E & K and a spicy herbal mixture, Amrita Bindu on AFB1 in P.monodon sub-adults. The study has revealed that Aflatoxin B1 significantly affects protein, lipid and carbohydrate metabolism in the shrimp penaeus monodon. The remarkable effect was observed in the immune system, as AFB1 has elevatod the immune response during initial days of exposure and prolonged exposure to the toxin leads to weakening of the animal’s immunity. Aflatoxin B1 level above 50 ppb severely affected the growth and feed utilization which in turn reflects the damage caused to the hepatopancreas as evident from the histological and ultrastructural observations.
Resumo:
As tetraciclinas são compostos antibacterianos utilizados em bovinos de leite para tratamento de doenças infecciosas, como a mastite, mas também como aditivos em ração animal. O uso das tetraciclinas pode conduzir à presença de resíduos destes fármacos no leite, principalmente se não forem utilizados de acordo com as indicações, nem respeitado o período mínimo de eliminação dos antibióticos pelo leite. A presença de resíduos de antibióticos no leite interfere no processo industrial dos seus derivados, podendo inviabilizar a produção destes e, consequentemente, causar igualmente prejuízos económicos, como por exemplo, pela inibição de fermentos lácticos que são culturas de microorganismos utilizados na produção de iogurtes, queijos e outros produtos lácteos. Os resíduos de antibióticos no leite de consumo podem representar riscos à saúde humana, podendo causar reacções alérgicas em indivíduos sensíveis ou ter um efeito adverso na flora intestinal humana, prejudicando a sua acção protectora local, além de propiciar a selecção de populações bacterianas resistentes.(Denobile & Nascimento, 2004)
Resumo:
Reducing carbon conversion of ruminally degraded feed into methane increases feed efficiency and reduces emission of this potent greenhouse gas into the environment. Accurate, yet simple, predictions of methane production of ruminants on any feeding regime are important in the nutrition of ruminants, and in modeling methane produced by them. The current work investigated feed intake, digestibility and methane production by open-circuit respiration measurements in sheep fed 15 untreated, sodium hydroxide (NaOH) treated and anhydrous ammonia (NH3) treated wheat, barley and oat straws. In vitro fermentation characteristics of straws were obtained from incubations using the Hohenheim gas production system that measured gas production, true substrate degradability, short-chain fatty acid production and efficiency of microbial production from the ratio of truly degraded substrate to gas volume. In the 15 straws, organic matter (OM) intake and in vivo OM digestibility ranged from 563 to 1201 g and from 0.464 to 0.643, respectively. Total daily methane production ranged from 13.0 to 34.4 l, whereas methane produced/kg OM matter apparently digested in vivo varied from 35.0 to 61.8 l. The OM intake was positively related to total methane production (R2 = 0.81, P<0.0001), and in vivo OM digestibility was also positively associated with methane production (R2 = 0.67, P<0.001), but negatively associated with methane production/kg digestible OM intake (R2 = 0.61, P<0.001). In the in vitro incubations of the 15 straws, the ratio of acetate to propionate ranged from 2.3 to 2.8 (P<0.05) and efficiencies of microbial production ranged from 0.21 to 0.37 (P<0.05) at half asymptotic gas production. Total daily methane production, calculated from in vitro fermentation characteristics (i.e., true degradability, SCFA ratio and efficiency of microbial production) and OM intake, compared well with methane measured in the open-circuit respiration chamber (y = 2.5 + 0.86x, R2 = 0.89, P<0.0001, Sy.x = 2.3). Methane production from forage fed ruminants can be predicted accurately by simple in vitro incubations combining true substrate degradability and gas volume measurements, if feed intake is known.
Resumo:
Calliandra calothyrsus is a tree legume native to Mexico and Central America. The species has attracted considerable attention for its capacity to produce both fuelwood and foliage for either green manure or fodder. Its high content of proanthocyanidins (condensed tannins) and associated low digestibility has, however, limited its use as a feed for ruminants, and there is also a widespread perception that wilting the leaves further reduces their nutritive value. Nevertheless, there has been increasing uptake of calliandra as fodder in certain regions, notably the Central Highlands of Kenya. The present study, conducted in Embu, Kenya, investigated effects of provenance, wilting, cutting frequency and seasonal variation both in the laboratory (in vitro digestibility, crude protein, neutral detergent fibre, extractable and bound proanthocyanidins) and in on-station animal production trials with growing lambs and lactating goats. The local Kenyan landrace of calliandra (Embu) and a closely-related Guatemalan provenance (Patulul) were found to be significantly different, and superior, to a provenance from Nicaragua (San Ramon) in most of the laboratory traits measured, as well as in animal production and feed efficiency. Cutting frequency had no important effect on quality; and although all quality traits displayed seasonal variation there was little discernible pattern to this variation. Wilting had a much less negative effect than expected, and for lambs fed calliandra as a supplement to a low quality basal feed (maize stover), wilting was actually found to give higher live-weight gain and feed efficiency. Conversely, with a high quality basal diet (Napier grass) wilting enhanced intake but not live-weight gain, so feed efficiency was greater for fresh material. The difference between fresh and wilted leaves was not great enough to justify the current widespread recommendation that calliandra should always be fed fresh.