987 resultados para Fed-batch systems
Resumo:
An investigation was performed regarding the application of a mechanically stirred anaerobic sequencing batch biofilm reactor containing immobilized biomass on inert polyurethane foam (AnSBBR) to the treatment of soluble metalworking fluids to remove organic matter and produce methane. The effect of increasing organic matter and reactor fill time, as well as shock load, on reactor stability and efficiency have been analyzed. The 5-L AnSBBR was operated at 30 A degrees C in 8-h cycles, agitation of 400 rpm, and treated 2.0 L effluent per cycle. Organic matter was increased by increasing the influent concentration (500, 1,000, 2,000, and 3,000 mg chemical oxygen demand (COD)/L). Fill times investigated were in the batch mode (fill time 10 min) and fed-batch followed by batch (fill time 4 h). In the batch mode, organic matter removal efficiencies were 87%, 86%, and 80% for influent concentrations of 500, 1,000, and 2,000 mgCOD/L (1.50, 3.12, and 6.08 gCOD/L.d), respectively. At 3,000 mgCOD/L (9.38 gCOD/L.d), operational stability could not be achieved. The reactor managed to maintain stability when a shock load twice as high the feed concentration was applied, evidencing the robustness of the reactor to potential concentration variations in the wastewater being treated. Increasing the fill time to 4 h did not improve removal efficiency, which was 72% for 2,000 mgCOD/L. Thus, gradual feeding did not improve organic matter removal. The concentration of methane formed at 6.08 gCOD/L was 5.20 mmolCH(4), which corresponded to 78% of the biogas composition. The behavior of the reactor during batch and fed-batch feeding could be explained by a kinetic model that considers organic matter consumption, production, and consumption of total volatile acids and methane production.
Resumo:
Many lab-scale studies have been carried out regarding the effect of feed strategy on the performance of anaerobic sequencing batch reactors (ASBR); however, more detailed pilot-scale studies should be performed to assess the real applicability of this type of operation. Therefore, the objective of this work was to assess the effect of feed strategy or fill time in a 1-m(3) mechanically stirred pilot-scale sequencing batch reactor, treating 0.65 m(3) sanitary wastewater in 8-h cycles at ambient temperature. Two reactor configurations were used: one containing granular biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam as inert support (denominated anaerobic sequencing batch biofilm reactor (AnSBBR)). The reactors were operated under five distinct feed strategies, namely: typical batch and fed-batch for 25%, 50%, 75%, and 100% of the cycle length. Stirring frequency in the ASBR was 40 rpm with two flat-blade turbine impellers and 80 rpm in the AnSBBR with two helix impellers. The results showed that both the ASBR and AnSBBR when operated under typical batch, fed-batch for 50% and 75% of the cycle length, presented improved organic matter removal efficiencies, without significant differences in performance, thus showing important operational flexibility. In addition, the reactors presented operation stability under all conditions.
Resumo:
The removal of sulfate and organic matter was assessed in an ASBR, which treated wastewater containing 500 mg COD L(-1) (3 g COD L(-1) d(-1)) in 8 h-cycles at 30 degrees C. The wastewater was enriched with sulfate at [COD/SO(4)(2-]) ratios of 1.34, 0.67 and 0.34 (8.8,4.5 and 2.2 gSO(4)(2-) L(-1) d(-1)). For each COD/[SO(4)(2-)] ratio fill times used were: 10 min (batch), 3 and 6 h (fed-batch), achieving sulfate reduction of 30%, 72% and 72% (COD/[SO(4)(2-)] of 1.34); 25%, 58% and 55% (COD/[SO(4)(2-)] of 0.67) and 23%, 37% and 27% (COD/[SO(4)(2-)] of 0.34), respectively, and organic matter removal of 87%, 68% and 80% (COD/[SO(4)(2-)] of 1.34); 78%, 75% and 69% (COD/[SO(4)(2-)] of 0.67) and 85%, 84% and 83% (COD/[SO(4)(2-)] of 0.34), respectively. The results showed that fed-batch operation improved sulfate reduction, whereas organic matter removals were similar for batch and fed-batch operation. In addition, increase in sulfate loading in the fed-batch operation improved organic matter removal. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this work was to analyze the interaction effects between temperature, feed strategy and COD/[SO(4)(2-)] levels, maintaining the same ratio, on sulfate and organic matter removal efficiency from a synthetic wastewater. This work is thus a continuation of Archilha et al. (2010) who studied the effect of feed strategy at 30 degrees C using different COD/[SO] ratios and levels. A 3.7-L anaerobic sequencing batch reactor with recirculation of the liquid phase and which contained immobilized biomass on polyurethane foam (AnSBBR) was used to treat 2.0 L synthetic wastewater in 8 h cycles. The temperatures of 15, 22.5 and 30 degrees C with two feed strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. Based on COD/[SO(4)(2-)] = 1 and on the organic matter (0.5 and 1.5 gCOD/L) and sulfate (0.5 and 1.5 gSO(4)(2-)/L) concentrations, the sulfate and organic matter loading rates applied were 1.5 and 4.5 g/L.d, i.e., same COD/[SO(4)(2-)] ratio (=1) but different levels (1.5/1.5 and 4.5/4.5 gCOD/gSO(4)(2-)). When reactor feed was 1.5 gCOD/L.d and 1.5 gSO(4)(2-)/L.d, gradual feeding (strategy b) showed to favor sulfate and organic matter removal in the investigated temperature range, indicating improved utilization of the electron donor for sulfate reduction. Sulfate removal efficiencies were 87.9; 86.3 and 84.4%, and organic matter removal efficiencies 95.2; 86.5 and 80.8% at operation temperatures of 30; 22.5 and 15 degrees C, respectively. On the other hand, when feeding was 4.5 gCOD/L.d and 4.5 gSO(4)(2-)/L.d, gradual feeding did not favor sulfate removal, indicating that gradual feeding of the electron donor did not improve sulfate reduction. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the oxidation of the model pollutant phenol has been studied by means of the O(3), O(3)-UV, and O(3)-H(2)O(2) processes. Experiments were carried out in a fed-batch system to investigate the effects of initial dissolved organic carbon concentration, initial, ozone concentration in the gas phase, the presence or absence of UVC radiation, and initial hydrogen peroxide concentration. Experimental results were used in the modeling of the degradation processes by neural networks in order to simulate DOC-time profiles and evaluate the relative importance of process variables.
Resumo:
The solar driven photo-Fenton process for treating water containing phenol as a contaminant has been evaluated by means of pilot-scale experiments with a parabolic trough solar reactor (PTR). The effects of Fe(II) (0.04-1.0 mmol L(-1)), H(2)O(2) (7-270 mmol L(-1)), initial phenol concentration (100 and 500 mg C L(-1)), solar radiation, and operation mode (batch and fed-batch) on the process efficiency were investigated. More than 90% of the dissolved organic carbon (DOC) was removed within 3 hours of irradiation or less, a performance equivalent to that of artificially-irradiated reactors, indicating that solar light can be used either as an effective complementary or as an alternative source of photons for the photo-Fenton degradation process. A non-linear multivariable model based on a neural network was fit to the experimental results of batch-mode experiments in order to evaluate the relative importance of the process variables considered on the DOC removal over the reaction time. This included solar radiation, which is not a controlled variable. The observed behavior of the system in batch-mode was compared with fed-batch experiments carried out under similar conditions. The main contribution of the study consists of the results from experiments under different conditions and the discussion of the system behavior. Both constitute important information for the design and scale-up of solar radiation-based photodegradation processes.
Resumo:
Since the recombinant thyroid-stimulating hormone (rhTSH) is secreted by stably transfected Chinese hamster ovary (CHO-hTSH) cells, a bioprocess consisting of immobilizing the cells on a substrate allowing their multiplication is very suitable for rhTSH recovering from supernatants at relative high degree of purity. In addition, such a system has also the advantage of easily allowing delicate manipulations of culture medium replacement. In the present study, we show the development of a laboratory scale bioprocess protocol of CHO-hTSH cell cultures on cytodex microcarriers (MCs) in a 1 L bioreactor, for the preparation of rhTSH batches in view of structure/function studies. CHO-hTSH cells were cultivated on a fetal bovine serum supplemented medium during cell growth phase. For rhTSH synthesis phase, 75% of supernatant was replaced by animal protein-free medium every 24 h. Cell cultures were monitored for agitation (rpm), temperature (A degrees C), dissolved oxygen (% DO), pH, cell concentration, MCs coverage, glucose consumption, lactate production, and rhTSH expression. The results indicate that the amount of MCs in the culture and the cell concentration at the beginning of rhTSH synthesis phase were crucial parameters for improving the final rhTSH production. By cultivating the CHO-hTSH cells with an initial cell seeding of four cells/MC on 4 g/L of MCs with a repeated fed batch mode of operation at 40 rpm, 37 A degrees C, 20% DO, and pH 7.2 and starting the rhTSH synthesis phase with 3 x 10(6) cells/mL, we were able to supply the cultures with enough glucose, to maintain low levels of lactate, and to provide high percent (similar to 80%) of fully covered MCs for a long period (5 days) and attain a high cell concentration (similar to 9 x 10(5) cells/mL). The novelty of the present study is represented by the establishment of cell culture conditions allowing us to produce similar to 1.6 mg/L of rhTSH in an already suitable degree of purity. Batches of produced rhTSH were purified and showed biological activity.
Resumo:
Carbon dioxide released from alcoholic fermentation accounts for 33% of the whole CO(2) involved in the use of ethanol as fuel derived from glucose. As Arthrospira platensis can uptake this greenhouse gas, this study evaluates the use of the CO(2) released from alcoholic fermentation for the production of Arthrospira platensis. For this purpose, this cyanobacterium was cultivated in continuous process using urea as nitrogen source, either using CO(2) from alcoholic fermentation, without any treatment, or using pure CO(2) from cylinder. The experiments were carried out at 120 mu mol photons m(-2) s(-1) in tubular photobioreactor at different dilution rates (0.2 <= D <= 0.8 d(-1)). Using CO(2) from alcoholic fermentation, maximum steady-state cell concentration (2661 +/- 71 mg L(-1)) was achieved at D 0.2 d(-1), whereas higher dilution rate (0.6 d(-1)) was needed to maximize cell productivity (839 mg L(-1) d(-1)). This value was 10% lower than the one obtained with pure CO(2), and there was no significant difference in the biomass protein content. With D 0.8 d(-1), it was possible to obtain 56% +/- 1.5% and 50% +/- 1.2% of protein in the dry biomass, using pure CO(2) and CO(2) from alcoholic fermentation, respectively. These results demonstrate that the use of such cost free CO(2) from alcoholic fermentation as carbon source, associated with low cost nitrogen source, may be a promising way to reduce costs of continuous cultivation of photosynthetic microorganisms, contributing at the same time to mitigate the greenhouse effect. (C) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 27: 650-656, 2011
Screening of Variables Influencing the Clavulanic Acid Production by Streptomyces DAUFPE 3060 Strain
Resumo:
Clavulanic acid (CA) is a beta-lactam antibiotic, which has a potent beta-lactamase inhibiting activity. The influence of five variables, namely pH (6.0, 6.4, and 6.8), temperature (28A degrees C, 30A degrees C, and 32A degrees C), agitation intensity (150, 200, and 250 rpm), glycerol concentration (5.0, 7.5, and 10 g/L) and soybean flour concentration (5.0, 12.5, and 20 g/L), on CA production by a new isolate of Streptomyces (DAUFPE 3060) was investigated in 250-mL Erlenmeyer flasks using a fractional factorial design. Temperature and soybean flour concentration were shown to be the two variables that exerted the most important effects on the production of CA at 95% confidence level. The highest CA concentration (494 mg/L) was obtained after 48 h at 150 rpm, 32A degrees C, pH 6.0, 5.0 g/L glycerol, and 20 g/L soybean flour concentrations. Under these conditions, the yields of biomass and product on consumed substrate were 0.26 g(X)/g(S) and 64.3 mg(P)/g(S), respectively. Fermentations performed in 3.0-L bench-scale fermenter allowed increasing the CA production by about 60%.
Resumo:
The scope of this research work was to investigate biogas production and purification by a two-step bench-scale biological system, consisting of fed-batch pulse-feeding anaerobic digestion of mixed sludge, followed by methane enrichment of biogas by the use of the cyanobacterium Arthrospira platensis. The composition of biogas was nearly constant, and methane and carbon dioxide percentages ranged between 70.5-76.0% and 13.2-19.5%, respectively. Biogas yield reached a maximum value (about 0.4 m(biogas)(3)/kgCOD(i)) at 50 days-retention time and then gradually decreased with a decrease in the retention time. Biogas CO(2) was then used as a carbon source for A. platensis cultivation either under batch or fed-batch conditions. The mean cell productivity of fed-batch cultivation was about 15% higher than that observed during the last batch phase (0.035 +/- 0.006 g(DM)/L/d), likely due to the occurrence of some shading effect under batch growth conditions. The data of carbon dioxide removal from biogas revealed the existence of a linear relationship between the rates of A. platensis growth and carbon dioxide removal from biogas and allowed calculating carbon utilization efficiency for biomass production of almost 95%. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study dealt with the influence of both the feeding time and light intensity on the fed-batch culture of the cyanobacterium Spirulina (Arthrospira) platensis using ammonium chloride as a nitrogen source. For this purpose, a 2 2 plus star central composite experimental design combined with response surface methodology was employed, and the maximum cell concentration (X-m), the cell productivity (P-X), and the yield of biomass on nitrogen (Y-X/N) were selected as the response variables. The optimum values of X-m (1,833 mgL(-1)) and Y-X/N (5.9 gg(-1)) estimated by the model at light intensity of 13 klux and feeding time of 17.2 days were very close to those obtained experimentally under these conditions (X-m = 1,771 +/- 41 mg L-1; Y-X/N = 5.7 +/- 0.17 gg(-1)). The cell productivity was a decreasing function of the ammonium chloride feeding time and a quadratic function of the light intensity. The protein and lipid contents of dry biomass collected at the end of cultivations were shown to decrease with increasing light intensity.
Resumo:
Rates of cell size increase are an important measure of success during the baculovirus infection process. Batch and fed batch cultures sustain large fluctuations in osmolarity that can affect the measured cell volume if this parameter is not considered during the sizing protocol. Where osmolarity differences between the sizing diluent and the culture broth exist, biased measurements of size are obtained as a result of the cell osmometer response. Spodoptera frugiperda (Sf9) cells are highly sensitive to volume change when subjected to a change in osmolarity. Use of the modified protocol with culture supernatants for sample dilution prior to sizing removed the observed error during measurement.
Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli
Resumo:
A quantitatively repeatable protocol was developed for poly(3-hydroxybutyrate) (PHB) production by Escherichia coli XL1-Blue (pSYL107). Two constant-glucose fed-batch fermentations of duration 25 h were carried out in a 5-L bioreactor, with the measured oxygen volumetric mass-transfer coefficient (k(L)a) held constant at 1.1 min(-1). All major consumption and production rates were quantified. The intracellular concentration profiles of acetyl-CoA (300 to 600 mug.g RCM-1) and 3-hydroxy-butyryl-CoA (20 to 40 mug.g RCM-1) were measured, which is the first time this has been performed for E. coli during PHB production. The kinetics of PHB production were examined and likely ranges were established for polyhydroxyalkanoate (PHA) enzyme activity and the concentration of pathway metabolites. These measured and estimated values are quite similar to the available literature estimates for the native PHB producer Ralstonia eutropha. Metabolic control analysis performed on the PHB metabolic pathway showed that the PHB flux was highly sensitive to acetyl-CoA/CoA ratio (response coefficient 0.8), total acetyl-CoA + CoA concentration (response coefficient 0.7), and pH (response coefficient -1.25). It was less sensitive (response coefficient 0.25) to NADPH/NADP ratio. NADP(H) concentration (NADPH + NADP) had a negligible effect. No single enzyme had a dominant flux control coefficient under the experimental conditions examined (0.6, 0.25, and 0.15 for 3-ketoacyl-CoA reductase, PHA synthase, and 3-ketothiolase, respectively). In conjunction with metabolic flux analysis, kinetic analysis was used to provide a metabolic explanation for the observed fermentation profile. In particular, the rapid onset of PHB production was shown to be caused by oxygen limitation, which initiated a cascade of secondary metabolic events, including cessation of TCA cycle flux and an increase in acetyl-CoA/CoA ratio. (C) 2001 John Wiley & Sons. Inc. Biotechnol Bioeng 74: 70-80, 2001.
Resumo:
The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 muM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 107 cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Renaturation of protein expressed as inclusion bodies within Escherichia coli is a key step in many bioprocesses. Operating conditions for the refolding step dramatically affect the amount of protein product recovered, and hence profoundly influence the process economics. The first systematic comparison of refolding conducted in batch, fed-batch and continuous stirred-tank reactors is provided Refolding is modeled as kinetic competition between first-order refolding (equilibrium reaction) and irreversible aggregation (second-order). Simulations presented allow direct comparison between different flowsheets and refolding schemes using a dimensionless economic objective. As expected from examination of the reaction kinetics, batch operation is the most inefficient merle. For the base process considered, the overall cost of fed-batch and continuous refolding is virtually identical (less than half that of the batch process). Reactor selection and optimization of refolding using overall economics are demonstrated to be vitally important.