942 resultados para Fed-batch process


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia - IBILCE

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Similar to other photosynthetic microorganisms, the cyanobacterium Arthrospira platensis can be used to produce pigments, single cell proteins, fatty acids (which can be used for bioenergy), food and feed supplements, and biofixation of CO2. Cultivation in a specifically designed tubular photobioreactor is suitable for photosynthetic biomass production, because the cultivation area can be reduced by distributing the microbial cells vertically, thus avoiding loss of ammonia and CO2. The aim of this study was to investigate the influence of light intensity and dilution rate on the photosynthetic efficiency and CO2 assimilation efficiency of A. platensis cultured in a tubular photobioreactor in a continuous process. Urea was used as a nitrogen source and CO2 as carbon source and for pH control. Steady-state conditions were achieved in most of the runs, indicating that continuous cultivation of this cyanobacterium in a tubular photobioreactor could be an interesting alternative for the large-scale fixation of CO2 to mitigate the greenhouse effect while producing high protein content biomass.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growth kinetics, sporulation, and toxicity of Bacillus thuringiensis var. israelensis were evaluated through the analysis of batch cultures with different dissolved oxygen (DO) profiles. Firstly, DO was maintained constant at 5%, 20%, or 50% throughout fermentation in order to identify the most suitable one to improve the main process parameters. Higher biomass concentration, cell productivity, and cell yield based on glucose were obtained with 50% DO. The higher aeration level also resulted in higher spore counts and markedly improved the toxic activity of the fermentation broth, which was 9-fold greater than that obtained with 5% DO (LC50 of 39 and 329 mg/L, respectively). Subsequently, using a two-stage oxygen supply strategy, DO was kept at 50% during the vegetative and transition phases until the maximum cell concentration was achieved. Then, DO was changed to 0%, 5%, 20%, or 100% throughout sporulation and cell lysis phases. The interruption of oxygen supply strongly reduced the spore production and thoroughly repressed the toxin synthesis. On the contrary, when DO was raised to 100% of saturation, toxic activity increased approximately four times (LC50 of 8.2 mg/L) in comparison with the mean values reached with lower DO levels, even though spore counts were lower than that from the 50% DO assay. When pure oxygen was used instead of normal air, it was possible to obtain 70% of the total biomass concentration achieved in the air assays; however, cultures did not sporulate and the toxin synthesis was consequently suppressed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis analyses problems related to the applicability, in business environments, of Process Mining tools and techniques. The first contribution is a presentation of the state of the art of Process Mining and a characterization of companies, in terms of their "process awareness". The work continues identifying circumstance where problems can emerge: data preparation; actual mining; and results interpretation. Other problems are the configuration of parameters by not-expert users and computational complexity. We concentrate on two possible scenarios: "batch" and "on-line" Process Mining. Concerning the batch Process Mining, we first investigated the data preparation problem and we proposed a solution for the identification of the "case-ids" whenever this field is not explicitly indicated. After that, we concentrated on problems at mining time and we propose the generalization of a well-known control-flow discovery algorithm in order to exploit non instantaneous events. The usage of interval-based recording leads to an important improvement of performance. Later on, we report our work on the parameters configuration for not-expert users. We present two approaches to select the "best" parameters configuration: one is completely autonomous; the other requires human interaction to navigate a hierarchy of candidate models. Concerning the data interpretation and results evaluation, we propose two metrics: a model-to-model and a model-to-log. Finally, we present an automatic approach for the extension of a control-flow model with social information, in order to simplify the analysis of these perspectives. The second part of this thesis deals with control-flow discovery algorithms in on-line settings. We propose a formal definition of the problem, and two baseline approaches. The actual mining algorithms proposed are two: the first is the adaptation, to the control-flow discovery problem, of a frequency counting algorithm; the second constitutes a framework of models which can be used for different kinds of streams (stationary versus evolving).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work represents the proceedings of the fifteenth symposium which convened at Colorado State University on May 24, 1985. The two day meeting was scheduled one month later than usual, i.e., after the spring semester, so that travelers from the Midwest (Iowa State University, Kansas State University and University of Missouri) could enjoy the unique mountain setting provided at Pingree Park. The background of the photograph on the cover depicts the beauty of the area. ContentsGreg Sinton and S.M. Leo, KSU. Models for the Biodegration of 2.4-D and Related Xenobiotic Compounds. V. Bringi, CSU. Intrinsic Kinetics from a Novel Immobilized Cell CSTR. Steve Birdsell, CU. Novel Microbial Separation Techniques. Mark Smith, MU. Kinetic Characterization of Growth of E. coli on Glucose. Michael M. Meagher, ISU. Kinetic Parameters of Di- and Trisaccharaide Hydrolysis by Glucoamylase II. G.T. Jones and A.K. Ghosh Hajra, KSU. Modeling and Simulation of Legume Modules with Reactive Cores and Inert Shells. S.A. Patel and C.H. Lee, KSU. Energetic Analysis and Liquid Circulation in an Airlift Fermenter. Rod R. Fisher, ISU. The Effects of Mixing during Acid Addition of Fractionally Precipitated Protein. Mark M. Paige, CSU. Fed-batch Fermentations of Clostridium acetobutylicum. Michael K. Dowd, ISU. A Nonequilibirium Thermodynamic Description of the Variation of Contractile Velocity and Energy Use in Muscle. David D. Drury, CSU. Analysis of Hollow Fiber Bioreactor Performance for MAmmalian Cells by On-Line MMR. H.Y. Lee, KSU. Process Analysis of Photosynthetic Continuous Culture Systems. C.J. Wang, MU. Kinetic Consideration in Fermentation of Cheese Whey to Ethanol.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background The optimisation and scale-up of process conditions leading to high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences. Typical experiments rely on varying selected parameters through repeated rounds of trial-and-error optimisation. To rationalise this, several groups have recently adopted the 'design of experiments' (DoE) approach frequently used in industry. Studies have focused on parameters such as medium composition, nutrient feed rates and induction of expression in shake flasks or bioreactors, as well as oxygen transfer rates in micro-well plates. In this study we wanted to generate a predictive model that described small-scale screens and to test its scalability to bioreactors. Results Here we demonstrate how the use of a DoE approach in a multi-well mini-bioreactor permitted the rapid establishment of high yielding production phase conditions that could be transferred to a 7 L bioreactor. Using green fluorescent protein secreted from Pichia pastoris, we derived a predictive model of protein yield as a function of the three most commonly-varied process parameters: temperature, pH and the percentage of dissolved oxygen in the culture medium. Importantly, when yield was normalised to culture volume and density, the model was scalable from mL to L working volumes. By increasing pre-induction biomass accumulation, model-predicted yields were further improved. Yield improvement was most significant, however, on varying the fed-batch induction regime to minimise methanol accumulation so that the productivity of the culture increased throughout the whole induction period. These findings suggest the importance of matching the rate of protein production with the host metabolism. Conclusion We demonstrate how a rational, stepwise approach to recombinant protein production screens can reduce process development time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The focus of this research was defined by a poorly characterised filtration train employed to clarify culture broth containing monoclonal antibodies secreted by GS-NSO cells: the filtration train blinded unpredictably and the ability of the positively charged filters to adsorb DNA from process material was unknown. To direct the development of an assay to quantify the ability of depth filters to adsorb DNA, the molecular weight of DNA from a large-scale, fed-batch, mammalian cell culture vessel was evaluated as process material passed through the initial stages of the purification scheme. High molecular weight DNA was substantially cleared from the broth after passage through a disc stack centrifuge and the remaining low molecular weight DNA was largely unaffected by passage through a series of depth filters and a sterilising grade membrane. Removal of high molecular weight DNA was shown to be coupled with clarification of the process stream. The DNA from cell culture supernatant showed a pattern of internucleosomal cleavage of chromatin when fractionated by electrophoresis but the presence of both necrotic and apoptotic cells throughout the fermentation meant that the origin of the fragmented DNA could not be unequivocally determined. An intercalating fluorochrome, PicoGreen, was elected for development of a suitable DNA assay because of its ability to respond to low molecular weight DNA. It was assessed for its ability to determine the concentration of DNA in clarified mammalian cell culture broths containing pertinent monoclonal antibodies. Fluorescent signal suppression was ameliorated by sample dilution or by performing the assay above the pI of secreted IgG. The source of fluorescence in clarified culture broth was validated by incubation with RNase A and DNase I. At least 89.0 % of fluorescence was attributable to nucleic acid and pre-digestion with RNase A was shown to be a requirement for successful quantification of DNA in such samples. Application of the fluorescence based assay resulted in characterisation of the physical parameters governing adsorption of DNA by various positively charged depth filters and membranes in test solutions and the DNA adsorption profile of the manufacturing scale filtration train. Buffers that reduced or neutralised the depth filter or membrane charge, and those that impeded hydrophobic interactions were shown to affect their operational capacity, demonstrating that DNA was adsorbed by a combination of electrostatic and hydrophobic interactions. Production-scale centrifugation of harvest broth containing therapeutic protein resulted in the reduction of total DNA in the process stream from 79.8 μg m1-1 to 9.3 μg m1-1 whereas the concentration of DNA in the supernatant of pre-and post-filtration samples had only marginally reduced DNA content: from 6.3 to 6.0 μg m1-1 respectively. Hence the filtration train was shown to ineffective in DNA removal. Historically, blinding of the depth filters had been unpredictable with data such as numbers of viable cells, non-viable cells, product titre, or process shape (batch, fed-batch, or draw and fill) failing to inform on the durability of depth filters in the harvest step. To investigate this, key fouling contaminants were identified by challenging depth filters with the same mass of one of the following: viable healthy cells, cells that had died by the process of apoptosis, and cells that had died through the process of necrosis. The pressure increase across a Cuno Zeta Plus 10SP depth filter was 2.8 and 16.5 times more sensitive to debris from apoptotic and necrotic cells respectively, when compared to viable cells. The condition of DNA released into the culture broth was assessed. Necrotic cells released predominantly high molecular weight DNA in contrast to apoptotic cells which released chiefly low molecular weight DNA. The blinding of the filters was found to be largely unaffected by variations in the particle size distribution of material in, and viscosity of, solutions with which they were challenged. The exceptional response of the depth filters to necrotic cells may suggest the cause of previously noted unpredictable filter blinding whereby a number of necrotic cells have a more significant impact on the life of a depth filter than a similar number of viable or apoptotic cells. In a final set of experiments the pressure drop caused by non-viable necrotic culture broths which had been treated with DNase I or benzonase was found to be smaller when compared to untreated broths: the abilities of the enzyme treated cultures to foul the depth filter were reduced by 70.4% and 75.4% respectively indicating the importance of DNA in the blinding of the depth filter studied.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several fermentation methods for the production of the enzyme dextransucrase have been employed. The theoretical aspects of these fermentation techniques have been given in the early chapters of this thesis together with a brief overview of enzyme biotechnology. A literature survey on cell recycle fermentation has been carried out followed by a survey report on dextransucrase production, purification and the reaction mechanism of dextran biosynthesis. The various experimental apparatus as employed in this research are described in detail. In particular, emphasis has been given to the development of continuous cell recycle fermenters. On the laboratory scale, fed-batch fermentations under anaerobic low agitation conditions resulted in dextransucrase activities of about 450 DSU/cm3 which are much higher than the yields reported in the literature and obtained under aerobic conditions. In conventional continuous culture the dilution rate was varied in the range between 0.375 h-1 to 0.55 h-1. The general pattern observed from the data obtained was that the enzyme activity decreased with increase in dilution rate. In these experiments the maximum value of enzyme activity was ∼74 DSU/cm3. Sparging the fermentation broth with CO2 in continuous culture appears to result in a decrease in enzyme activity. In continuous total cell recycle fermentations high steady state biomass levels were achieved but the enzyme activity was low, in the range 4 - 27 DSU/cm3. This fermentation environment affected the physiology of the microorganism. The behaviour of the cell recycle system employed in this work together with its performance and the factors that affected it are discussed in the relevant chapters. By retaining the whole broth leaving a continuous fermenter for between 1.5 - 4 h under controlled conditions, the enzyme activity was enhanced with a certain treatment from 86 DSU/cm3 to 180 DSU/cm3 which represents a 106% increase over the enzyme activity achieved by a steady-state conventional chemostat. A novel process for dextran production has been proposed based on the findings of this latter part of the experimental work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A review of the literature of work carried out on dextransucrase production, purification, immobilization and reactions has been carried out. A brief review has also been made of the literature concerning general enzyme biotechnology and fermentation technology. Fed-batch fermentation of the bacteria Leuconostoc mesenteroides NRRL B512 (F) to produce dextransucrase has formed the major part of this research. Aerobic and anaerobic fermentations have been studied using a 16 litre New Brunswick fermenter which has a 3-12 litre working volume. The initial volume of broth used in the studies was 6 litres. The results of the fed-batch fermentations showed for the first time that yields of dextransucrase are much higher under the anaerobic conditions than during the aerobic fermentations. Dextransucrase containing 300-350 DSU/cm3 of enzyme activity has been obtained during the aerobic fermentations, while in the anaerobic fermentations, enzyme yields containing 450-500 DSU/cm3 have been obtained routinely. The type of yeast extract used in the fermentation medium has been found to have significant effects on enzyme yield. Of the different types studied, the Gistex Standard was found to be the type that favoured the highest enzyme production. Studies have also been carried out on the effect of agitation rate and antifoam on the enzyme production during the anaerobic experiments. Agitation rates of up to 600 rpm were found not to affect the enzyme yield, however, the presence of antifoam in the medium led to a significant reduction in enzyme activity (less than 300 DSU/cm3). Scale-up of the anaerobic fermentations has been performed at up to the 1000 litre level with enzyme yields containing more than 400 DSU/cm3 of activity being produced. Some of the enzyme produced at this scale was used for the first time to produce dextran on an industrial scale via the enzyme route, with up to 99% conversion of sucrose to dextran being obtained. An attempt has been made at continuous dextransucrase production. Cell washout was observed to occur at dilution rates of greater than 0.4 h-1. Dextransucrase containing up to 25 DSU/cm3/h has been produced continuously.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Desalination of groundwater is essential in many arid areas that are far from both seawater and fresh water resources. The ideal groundwater desalination system should operate using a sustainable energy source and provide high water output per land area and cost. To avoid discharging voluminous brine, it should also provide high recovery. To achieve these aims, we have designed DesaLink, a novel approach to linking the solar Rankine cycle to reverse osmosis (RO). To achieve high recovery without the need for multiple RO stages, DesaLink adopts a batch mode of operation. It is suited to use with a variety of solar thermal collectors including linear Fresnel reflectors (LFR). For example, using a LFR occupying 1,000m of land and providing steam at 200°C and 15.5 bar, DesaLink is predicted to provide 350m of fresh water per day at a recovery ratio of 0.7, when fed with brackish groundwater containing 5,000ppm of sodium chloride. Here, we report preliminary experiments to assess the feasibility of the concept. We study the effects of longitudinal dispersion, concentration polarisation and describe a pilot experiment to demonstrate the batch process using a materials testing machine. In addition, we demonstrate a prototype of DesaLink running from compressed air to simulate steam.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tutkimuskäyttöön tarkoitettujen rekombinanttiproteiinien tuottaminen fermentoimalla on yleinen menetelmä bioteollisuudessa. Mikrobit kasvatetaan fermentorissa, joka tarjoaa kontrolloidun kasvuympäristön ja sopivat tuotto-olosuhteet halutulle tuotteelle. Eräs fermentointimuodoista on korkeatuottoinen ja pitkäkestoinen panossyöttökasvatus, jossa saavutetaan panoskavatusta merkittävästi korkeampi solutiheys jatkamalla panosvaiheen jälkeen kasvua rajoittavan substraatin syöttöä. Laboratoriomittakaavassa fermentorikasvatusten tilavuudet vaihtelevat litrasta kymmeniin ja niissä kasvatusta seurataan sekä ohjataan joko fermentorista tai tietokoneesta. Tyypillisessä fermentointiprosessissa operaattori tarkkailee muun muassa vaahdonkorkeutta sekä käynnistää pumppuja olosuhteiden muuttuessa. Tällaiset tehtävät ovat teollisen mittakaavan laitteistoissa usein automatisoituja. Diplomityön tarkoituksena oli päivittää kahden Turun yliopiston biotekniikan laboratoriossa sijaitsevan BioFlo® -sarjan pöytäfermentorin MS-DOS -pohjainen tietokoneohjausohjelma nykyaikaiseksi ja lisätä siihen etäseuranta ja -ohjaus. Ohjelmaan oli tarkoitus liittää erillinen optinen solutiheysanturi, jonka lukemien häiriötä haluttiin myös vähentää signaalinkäsittelyllä. Lisäksi vaahdonestoaineen ja indusorin lisäykset haluttiin automatisoida panossyöttökasvatuksessa. Vaahdonkorkeuden havaitsemisen mahdollisuutta konenäön menetelmin haluttiin selvittää, jotta vaahdonestoaineen automaattiset lisäykset voitaisiin toteuttaa nettikameran syötteen perusteella. Koekasvatuksilla osoitettiin päivitetyn ohjausohjelman toimivan panos- ja panossyöttömuodoilla. Uuden käyttöliittymän avulla pystyttiin automatisoimaan panoskasvatuksen lisäykset ja syöttönopeuden muutokset sekä tunnistamaan kasvatusliuosten vaahdonkorkeutta vaahdonestoaineen lisäykseen riittävällä kahden senttimetrin tarkkuudella. Lisäksi käyttöliittymä mahdollisti kasvatuksen ohjauksen ja seurauksen myös etänä. Työssä kehitetty ohjausohjelma julkaistiin avoimena ohjelmana ilman etä- ja nettikameratoimintoja. Ohjelma toimii hyvin BioFlo® -sarjan fermentorien käyttöliittymänä, mutta avoimen lähdekoodin ansiosta kuka tahansa voi hyödyntää ohjelmaa pohjana myös uusissa projekteissa tai muissa fermentorimalleissa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single-cell oils (SCO) have been considered a promising source of 3rd generation biofuels mainly in the final form of biodiesel. However, its high production costs have been a barrier towards the commercialization of this commodity. The fast growing yeast Rhodosporidium toruloides NCYC 921 has been widely reported as a potential SCO producing yeast. In addition to its well-known high lipid content (that can be converted into biodiesel), is rich in high value added products such as carotenoids with commercial interest. The process design and integration may contribute to reduce the overall cost of biofuels and carotenoid production and is a mandatory step towards their commercialization. The present work addresses the biomass disruption, extraction, fractionation and recovery of products with special emphasis on high added valued carotenoids (beta-carotene, torulene, torularhodin) and fatty acids directed to biodiesel. The chemical structure of torularhodin with a terminal carboxylic group imposes an additional extra challenge in what concern its separation from fatty acids. The proposed feedstock is fresh biomass pellet obtained directly by centrifugation from a 5L fed-batch fermentation culture broth. The use of a wet instead of lyophilised biomass feedstock is a way to decrease processing energy costs and reduce downstream processing time. These results will contribute for a detailed process design. Gathered data will be of crucial importance for a further study on Life-Cycle Assessment (LCA).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Human is an essential cellular enzyme that is found in all human cells. As this enzyme is upregulated in cancer cells exceedingly, it is used as a target for cancer chemotherapeutic drug development. As such, producing the in-house enzyme for the purpose to speed up the search for more cost-effective and target specific hTopoI inhibitors is warranted. This study aims to compare the optimised conditions for the expression of hTopoI in KM71H (MutS) and X33 (Mut+) strains of Pichia pastoris P. pastoris transfected with an hTopoI recombinant vector was used for the optimization of a higher level of hTopoI expression. Results: In the process, fed-batch cultivation parameters that influence the expression of hTopoI, such as culture temperature, methanol induction and feeding strategy, were optimised in the transfected KM71H and X33 P. pastoris strains in a shake flask system. The cell density and total protein concentration (protein level) of transfected P. pastoris were compared to determine the optimum culture conditions for each transfected P. pastoris strain. A higher hTopoI level was observed in the transfected KM71H culture supernatant (2.26 ng/mL) when the culture was incubated in the optimum conditions. Conclusions: This study demonstrated that MutS strain (KM71H) expressed and secreted a higher level of hTopoI heterologous protein in the presence of methanol compared to the Mut+ strain; X33 (0.75 ng/mL). However, other aspects of optimization, such as pH, should also be considered in the future, to obtain the optimum expression level of hTopoI in P. pastoris.