926 resultados para Fecal coliforms
Resumo:
Ice used for human consumption or to refrigerate foods can be contaminated with pathogenic microorganisms and may become a vehicle for human infection. To evaluate the microbiological content of commercial ice and ice used to refrigerate fish and seafood, 60 ice samples collected at six different retail points in the city of Araraquara, SP, Brazil, were studied. The following parameters were determined: total plate counts (37° C and 4° C), most probable number (MPN) for total coliforms, fecal coliforms and Escherichia coli, presence of Salmonella spp., Shigella spp., Yersinia spp., E. coli, Vibrio cholerae and Aeromonas spp.. Results suggested poor hygienic conditions of ice production due to the presence of indicator micro-organisms. Fifty strains of E. coli of different serotypes, as well as one Y. enterocolitica biotype 1, serogroup 0:5, 27 and phage type Xz (Ye 1/05,27/Xz) and one Salmonella Enteritidis phage type 1 (PT1) were isolated. Aeromonas spp., Shigella spp. and V. cholerae were not detected. The presence of high numbers of coliforms, heterotrophic indicator micro-organisms and pathogenic strains suggested that commercial ice and ice used to refrigerate fish and seafood may rep resent a potential hazard to the consumer in our community. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The effects of metal bioleaching on nutrient solubilization, especially nitrogen and phosphorous, from anaerobically-digested sewage sludge were investigated in this work. The assessment of the sanitary quality of the anaerobic sludge after bioleaching was also carried out by enumerating indicator (total coliforms, fecal coliforms, and fecal streptococci) and total heterotrophic bacteria. The experiments of bioleaching were performed using indigenous sulphur-oxidizing bacteria (Thiobacillus spp.) as inoculum and samples of anaerobically-digested sludge. Nitrogen and phosphorous solubilization from sewage sludge was assessed by measuring, respectively, the concentration of Total Kjeldahl Nitrogen, ammonia, nitrate/nitrite, and soluble and total phosphorous before and after the bioleaching assays. At the end of the experiment, after 4 days of incubation (final pH of 1.4), the following metal solubilization yields were obtained: zinc, 91%; nickel, 87%; copper, 79%; lead, 52%; and chromium, 42%. As a result of sludge acidification, the viable counts of selected indicator bacteria were decreased to below the detection limit (4 × 103 cfu 100 ml-1), followed by an increase in the mineral fraction of nitrogen (from 6 to 10%) and in the soluble fraction of phosphorous (from 15 to 30%). Although some loss of sludge nutrients can occur during solid-liquid separation following bioleaching, its beneficial effects as metal removal and reduction of pathogenic bacteria are sufficient to consider the potential of this treatment before sludge disposal onto agricultural fields.
Resumo:
Objective. To assess the potential for contamination of wastewaters from pig farming. Methods. Wastewaters from pig farming were stored in a tank. After 0, 30, 60, 90, and 120 days of hydraulic retention, they were added to lysimeters filled with argillaceous, sandy, or medium soil. Finally, these lysimeters were submitted to simulations of either a rainy season or a dry season. The number of colony-forming units (CFUs) of total coliforms, fecal coliforms, and fecal streptococci was measured in the effluents of the storage tank (for the various periods of hydraulic retention), in the percolate from the lysimeters, and in the three types of soil. The microbiological analyses were carried out using the membrane filter technique. The pH analyses were done potentiometrically. Results. For the three microorganisms, the largest decrease in bacterial counts in the storage tanks occurred with 90 or 120 days of retention. There was a marked decrease in the bacterial count in the percolates of the three soils. For the three soil types the greatest reduction in bacterial counts was found in medium soil, due to its acidity (pH < 7.0). Hydraulic retention was not sufficient to ensure the sanitary adequacy of the wastewaters and their use for irrigation, given that fecal coliform values were above 1 000 CFU per 100 mL. Therefore, adding the residues to the soil was considered a second stage of treatment. Conclusions. The retention of wastewaters followed by adding them to soil was effective in minimizing the contaminating effect of pig farming residues. The storage time for wastewaters from pig farming could be decreased from 120 to 90 days.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)