765 resultados para Fatty acid methyl ester (FAME)
Resumo:
Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
Algae biofuel have emerged as viable renewable energy sources and are the potential alternatives to fossil-based fuels in recent times. Algae have the potential to generate significant quantities of commercially viable biofuel apart from treating wastewater. Three algal species, viz. Chlorococcum sp., Microcystis sp. and Phormidium sp. proliferating in wastewater ponds were isolated and cultured in the laboratory myxotrophically under similar wastewater conditions. Chlorococcum sp. attained a mean biomass productivity of 0.09 g. I(-1)d(-1) with the maximum `biomass density of 1.33 g I-1 and comparatively higher lipid content of 30.55% (w/w) on the ninth day of the culture experiment. Under similar conditions Microcystis sp. and Phormidium sp. attained mean biomass productivities of 0.058 and 0.063 g I-1 d(-1) with a total lipid content of 8.88% and 18.66% respectively. Biochemical composition (carbohydrates, proteins, lipids and phosphates) variations and lipid accumulation studies were performed by comparison of the ratios of carbohydrate to protein; lipid to protein (L/P) and lipid to phosphates using attenuated total reflectance-Fourier transform infrared spectroscopy which showed higher L/P ratio during the stationary phase of algal growth. Composition analysis of fatty acid methyl ester has been performed using gas chromatography and mass spectrometry. Chlorococcum sp. with higher productivity and faster growth rate has higher lipid content with about 67% of saturated fatty acid dominated by palmitate (36.3%) followed by an unsaturate as linoleate (14%) and has proved to be an economical and viable feedstock for biofuel production compared to the other wastewater-grown species.
Resumo:
Algae grown in outdoor reactors (volume: 10 L and depth: 20 cm) were fed directly with filtered and sterilised municipal wastewater. The nutrient removal efficiencies were 86%, 90%, 89%, 70% and 76% for TOC, TN, NH4-N, TP and OP, respectively, and lipid content varied from 18% to 28.5% of dry algal biomass. Biomass productivity of similar to 122 mg/l/d (surface productivity 24.4 g/m(2)/d) and lipid productivity of similar to 32 mg/l/d were recorded. Gas chromatography and mass spectrometry (GC-MS) analyses of the fatty acid methyl esters (FAME) showed a higher content of desirable fatty acids (bearing biofuel properties) with major contributions from saturates such as palmitic acid C16:0; similar to 40%] and stearic acid C18:0; similar to 34%], followed by unsaturates such as oleic acid C18:1(9); similar to 10%] and linoleic acid C18:2(9,12); similar to 5%]. The decomposition of algal biomass and reactor residues with an exothermic heat content of 123.4 J/g provides the scope for further energy derivation. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
An increasin g interest in biofuel applications in modern engines requires a better understanding of biodiesel combustion behaviour. Many numerical studies have been carried out on unsteady combustion of biodiesel in situations similar to diesel engines, but very few studies have been done on the steady combustion of biodiesel in situations similar to a gas turbine combustor environment. The study of biodiesel spray combustion in gas turbine applications is of special interest due to the possible use of biodiesel in the power generation and aviation industries. In modelling spray combustion, an accurate representation of the physical properties of the fuel is a first important step, since spray formation is largely influenced by fuel properties such as viscosity, density, surface tension and vapour pressure. In the present work, a calculated biodiesel properties database based on the measured composition of Fatty Acid Methyl Esters (FAME) has been implemented in a multi-dimensional Computational Fluid Dynamics (CFD) spray simulation code. Simulations of non-reacting and reacting atmospheric-pressure sprays of both diesel and biodiesel have been carried out using a spray burner configuration for which experimental data is available. A pre-defined droplet size probability density function (pdf) has been implemented together with droplet dynamics based on phase Doppler anemometry (PDA) measurements in the near-nozzle region. The gas phase boundary condition for the reacting spray cases is similar to that of the experiment which employs a plain air-blast atomiser and a straight-vane axial swirler for flame stabilisation. A reaction mechanism for heptane has been used to represent the chemistry for both diesel and biodiesel. Simulated flame heights, spray characteristics and gas phase velocities have been found to compare well with the experimental results. In the reacting spray cases, biodiesel shows a smaller mean droplet size compared to that of diesel at a constant fuel mass flow rate. A lack of sensitivity towards different fuel properties has been observed based on the non-reacting spray simulations, which indicates a need for improved models of secondary breakup. By comparing the results of the non-reacting and reacting spray simulations, an improvement in the complexity of the physical modelling is achieved which is necessary in the understanding of the complex physical processes involved in spray combustion simulation. Copyright © 2012 SAE International.
Resumo:
An important first step in spray combustion simulation is an accurate determination of the fuel properties which affects the modelling of spray formation and reaction. In a practical combustion simulation, the implementation of a multicomponent model is important in capturing the relative volatility of different fuel components. A Discrete Multicomponent (DM) model is deemed to be an appropriate candidate to model a composite fuel like biodiesel which consists of four components of fatty acid methyl esters (FAME). In this paper, the DM model is compared with the traditional Continuous Thermodynamics (CTM) model for both diesel and biodiesel. The CTM model is formulated based on mixing rules that incorporate the physical and thermophysical properties of pure components into a single continuous surrogate for the composite fuel. The models are implemented within the open-source CFD code OpenFOAM, and a semi-quantitative comparison is made between the predicted spray-combustion characteristics and optical measurements of a swirl-stabilised flame of diesel and biodiesel. The DM model performs better than the CTM model in predicting a higher magnitude of heat release rate in the top flame brush region of the biodiesel flame compared to that of the diesel flame. Using both the DM and CTM models, the simulation successfully reproduces the droplet size, volume flux, and droplet density profiles of diesel and biodiesel. The DM model predicts a longer spray penetration length for biodiesel compared to that of diesel, as seen in the experimental data. Also, the DM model reproduces a segregated biodiesel fuel vapour field and spray in which the most abundant FAME component has the longest vapour penetration. In the biodiesel flame, the relative abundance of each fuel component is found to dominate over the relative volatility in terms of the vapour species distribution and vice versa in the liquid species distribution. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
以固定化的假丝酵母酶为催化剂,在三段式固定床反应器内,醇油摩尔比为1:1,采用分级流加甲醇的方式,将高酸值的酸化油转化为生物柴油,探讨了酶量、溶剂量、水量、温度、反应液流速等与产物中甲酯含量的关系。正交实验结果表明,反应的最适条件为酶用量、溶剂量、水量分别为油重的15%、10%、10%,反应液流速为0.8g·min^-1,温度为45℃,在此条件下,产物中甲酯含量达到了90.18%。
The transesterification of acid oil and methanol to biodiesel catalyzed by immobilized Candida lipase in fixed bed reactors was studied. The acid oil and methanol were pumped into the reactors in three-steps which were kept the molar ratio as 1: 1. The result of orthogonality experiment indicated that: the optimal conditions for transesterification of acid oil were as following: 15% immobilized lipase, 10% hexane and 10% water of acid oil, reaction temperature 45 ℃, flow velocity of reactant 0.8 g· min ^-1 The content of fatty acid methyl ester of 90. 18% could be obtained under the optimal conditions.
Resumo:
生物柴油的生产原料、催化剂、工艺流程等存在多样化特点,为比较各种方法的优劣,需要建立一种适宜、通用的测定方法。通过分析国内外相关测定方法,提出以气相色谱测定反应产物,十七碳脂肪酸甲酯为标准物,内标法计算反应转化率和产率的方法。
Resumo:
The feasibility of biodiesel production from tung oil was investigated. The esterification reaction of the free fatty acids of tung oil was performed using Amberlyst-15. Optimal molar ratio of methanol to oil was determined to be 7.5:1, and Amberlyst-15 was 20.8wt% of oil by response surface methodology. Under these reaction conditions, the acid value of tung oil was reduced to 0.72mg KOH/g. In the range of the molar equivalents of methanol to oil under 5, the esterification was strongly affected by the amount of methanol but not the catalyst. When the molar ratio of methanol to oil was 4.1:1 and Amberlyst-15 was 29.8wt% of the oil, the acid value decreased to 0.85mg KOH/g. After the transesterification reaction of pretreated tung oil, the purity of tung biodiesel was 90.2wt%. The high viscosity of crude tung oil decreased to 9.8mm(2)/s at 40 degrees C. Because of the presence of eleostearic acid, which is a main component of tung oil, the oxidation stability as determined by the Rancimat method was very low, 0.5h, but the cold filter plugging point, -11 degrees C, was good. The distillation process did not improve the fatty acid methyl ester content and the viscosity.
Resumo:
The effect of increasing concentrations (65, 130, 325, 1,300, and 3,250 μg/g soil dry weight) of 1,2-dichlorobenzene (1,2-DCB) on the microbial biomass, metabolic potential, and diversity of culturable bacteria was investigated using soil microcosms. All doses caused a significant (p < 0.05) decrease in viable hyphal fungal length. Bacteria were more tolerant, only direct total counts in soils exposed to 3,250 μg/g were significantly (p < 0.05) lower than untreated controls, and estimates of culturable bacteria showed no response. Pseudomonads counts were stimulated by 1,2-DCB concentrations of up to 325 μg/g; above this level counts were similar to controls. Fatty acid methyl ester analysis of taxonomic bacterial composition reflected the differential response of specific genera to increasing 1,2-DCB concentrations, especially the tolerance of Bacillus to the highest concentrations. The shifts in community composition were reflected in estimates of metabolic potential assessed by carbon assimilation (Biolog) ability. Significantly fewer (p < 0.05) carbon sources were utilized by communities exposed to 1,2-DCB concentrations greater than 130 μg/g (<64 carbon sources utilized) than control soils (83); the ability to assimilate individual carbohydrates sources was especially compromised. The results of this study demonstrate that community diversity and metabolic potential can be used as effective bioindicators of pollution stress and concentration effects.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Six samples from Sites 1219 and 1221 ranging in age from early Eocene to early Oligocene were analyzed for freely extractable lipids to determine whether the low organic carbon (Corg) sediments of the Eocene equatorial Pacific (Corg content typically 0.03%) are appropriate for biomarker studies. Only one sample from the Oligocene equatorial Pacific (Sample 199-1219A-13H-3, 50-54 cm) contained any biomarkers of interest to paleoceanography. The only lipids identified in the remaining samples appear to be contaminants from drilling or subsequent handling. Sample 199-1219A-13H-3, 50-54 cm, contained alkenone biomarkers specific to haptophyte algae that are used for estimating past mean annual sea-surface temperature (maSST). If the Holocene calibration of maSST is appropriate for the Oligocene, the estimated equatorial temperature is >=28.3°C, or at least 3°C warmer than modern equatorial maSST at a similar longitude.
Resumo:
Symptoms associated with pistachio dieback in Australia include decline (little or no current season growth), xylem staining in shoots two or more years old, trunk mu and limb lesions (often covered by black, superficial fungal growth), excessive exudation of resin, dieback and death of the tree. Bacteria belonging to the genus Xanthomonas have been suggested as the causal agent. To confirm the constant association between these bacteria and the disease syndrome, the absence of other pathogens and the identity of the pathogen, we performed a series of isolations and pathogenicity tests. The only microorganism consistently isolated from diseased tissue was a bacterium that produced yellow, mucoid colonies and displayed morphological and cultural characteristics typical of the genus Xanthomonas. Database comparisons of the fatty acid and whole-cell protein profiles of five representative pistachio isolates indicated that they all belonged to X. translucens, but it was not possible to allocate the isolates to pathovar. Pathogenicity tests on cereals and grasses supported this identification. However, Koch's postulates have been only partially fulfilled because not all symptoms associated with pistachio dieback were reproduced on inoculated two-year-old pistachio trees. While discolouration was observed, dieback, excessive resinous exudate and trunk and limb lesions were not produced; expression of these symptoms may be delayed, and long-term monitoring of a small number of inoculated trees is in progress.
Resumo:
O crescente consumo de energia, bem como a possibilidade de esgotamento dos recursos não renováveis, tem fomentado a busca de fontes de energia alternativas. O biodiesel é um biocombustível obtido a partir de fontes renováveis e a sua utilização permite reduzir as emissões de gases com efeito de estufa. Nos últimos anos tem-se produzido biodiesel a partir de óleos alimentares usados (OAU), sendo que com esta aplicação valoriza-se um resíduo e simultaneamente produz-se um combustível “verde”. O biodiesel é produzido através das reações de transesterificação e/ou esterificação entre triglicerídeos e/ou ácidos gordos livres e um álcool, na presença de um catalisador. O rendimento do processo está estritamente relacionado com o tipo de catalisador e as condições que este opera. O principal objetivo do presente trabalho consistiu na avaliação do efeito de alguns parâmetros operacionais no desempenho de uma lípase imobilizada (Novozyme® 435), nomeadamente: (i) índice de acidez do óleo, (ii) razão mássica de enzima/óleo e (iii) método regeneração da enzima com vista à sua reutilização. Também foi objeto de estudo do presente trabalho a produção em contínuo, num (bior)reator tubular de leito fixo, de ésteres metílicos de ácidos gordos (FAME) usando a referida enzima. Registou-se um aumento rendimento em com o incremento do índice de acidez do óleo usado, o que indicia que a enzima catalisa simultaneamente as reações de esterificação e transesterificação. Relativamente à razão mássica de enzima/óleo, dentro da gama testada verificou-se um aumento do rendimento em FAME com a concentração da enzima em meio reacional. Dos vários solventes testados, a aplicação de solvente tert-butanol na regeneração (com incubação) da enzima foi o que melhores resultados teve. Finalmente, os resultados obtidos no ensaio de produção de FAME num biorreator contínuo são motivadores, criando expectativas de uma possível aplicação industrial no futuro.
Resumo:
Doutoramento em Engenharia dos Biossistemas - Instituto Superior de Agronomia - UL
Resumo:
Mangrove ecosystems are environments subject to substantial degradation by anthropogenic activities. Its location, in coastal area, interfacing the continents and the oceans makes it substantially important in the prospection for biotechnological applications. In this study, we assessed the diversity of culturable bacteria present over the seasons at two depths (0-10 and 30-40 cm) in a mangrove sediment and in a transect area from the land to the sea. In total, 238 bacteria were isolated, characterized by Amplified Ribosomal DNA Restriction Analysis (ARDRA) and further identified, by Fatty Acid Methyl Esther (FAME-MIDI), into the orders of Vibrionales, Actinomycetales and Bacillales. Also the ability of the isolates in producing economically important enzymes (amylases, proteases, esterases and lipases) was evaluated and the order Vibrionales was the main enzymatic source.