990 resultados para Failure (mechanical)
Resumo:
The main objective of this work is to evaluate, by non-destructive techniques, seven old Chestnut beams. For that, after the geometric assessment and the detailed visual inspection that allowed to strength grade the beams, a series of non-destructive tests was setup. In a first step, non-destructive bending tests, under the elastic limit, were performed to quantify the modulus of elasticity in bending (MoE) of the seven beams. Then, Resistograph® and Pilodyn® tests were done to assess the superficial decay and to have aclearer idea of the voids dimensions. Then, two beams were tested in bending until failure to evaluate the bending strength. In a second step, end parts were cut from the beams, one per end of the beams, to perform Resistograph®, Pilodyn® and ultrasound tests, to quantify the density of the beams and to extract meso-specimens to be used in tension parallel to the grain tests
Resumo:
In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in Poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements.
Resumo:
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.
Resumo:
OBJECTIVE: To analyze the impact of acute renal failure (ARF) on the evolution of infants undergoing cardiac surgery. METHODS: We assessed 15 infants undergoing cardiac surgery who developed (ARF). Their demographic, clinical and surgical data, and evolution were analyzed. RESULTS: Their mean age was 4.4±4.0 months (8 days to 24 months). Twelve infants were males, and 4 patients already had ARF at surgery. The primary cause of ARF was immediate acute cardiac dysfunction in 10 infants, cardiac dysfunction associated with sepsis in 2 infants, and isolated sepsis in 3 infants. All children depended on mechanical ventilation during their postoperative period, 14 infants used vasoactive drugs, and 11 had an infectious process associated with ARF. Thirteen infants required dialytic treatment. Eleven infants developed oluguric ARF, and all had to undergo peritoneal dialysis; of the 4 patients with non-oliguric, 2 required dialysis, the main indication being hypervolemia. Of these 13 dialyzed infants, 4 died in the first 24 hours because of the severity of the underlying cardiac disease (mean urea level of 49±20 mg/dl). The mortality rate for the entire group was 60% , and it was higher among the patients with oliguria ARF (73% vs 25%, p<0.001). The cause of death was acute cardiac dysfunction in 6 infants (early type-1ARF) and sepsis in the 3 remaining infants (late type-2 ARF). CONCLUSION: The mortality rate of ARF associated with cardiac surgery in infants was hight, being higher among children with oliguria; peritoneal dialysis was indicated due to clinically uncontrolled hypervolemia and not to the uremic hypercatabolic state.
Resumo:
OBJECTIVE: To analyze parameters of respiratory system mechanics and oxygenation and cardiovascular alterations involved in weaning tracheostomized patients from long-term mechanical ventilation after cardiac surgery. METHODS: We studied 45 patients in their postoperative period of cardiac surgery, who required long-term mechanical ventilation for more than 10 days and had to undergo tracheostomy due to unsuccessful weaning from mechanical ventilation. The parameters of respiratory system mechanics, oxigenation and the following factors were analyzed: type of surgical procedure, presence of cardiac dysfunction, time of extracorporeal circulation, and presence of neurologic lesions. RESULTS: Of the 45 patients studied, successful weaning from mechanical ventilation was achieved in 22 patients, while the procedure was unsuccessful in 23 patients. No statistically significant difference was observed between the groups in regard to static pulmonary compliance (p=0.23), airway resistance (p=0.21), and the dead space/tidal volume ratio (p=0.54). No difference was also observed in regard to the variables PaO2/FiO2 ratio (p=0.86), rapid and superficial respiration index (p=0.48), and carbon dioxide arterial pressure (p=0.86). Cardiac dysfunction and time of extracorporeal circulation showed a significant difference. CONCLUSION: Data on respiratory system mechanics and oxygenation were not parameters for assessing the success or failure. Cardiac dysfunction and time of cardiopulmonary bypass, however, significantly interfered with the success in weaning patients from mechanical ventilation.
Resumo:
Terminal heart failure can be the cause or the result of major dysfunctions of the organisms. Although, the outcome of the natural history is the same in both situations, it is of prime importance to differentiate the two, as only heart failure as the primary cause allows for successful mechanical circulatory support as bridge to transplantation or towards recovery. Various objective parameters allow for the establishment of the diagnosis of terminal heart failure despite optimal medical treatment. A cardiac index <2.0 l/min, and a mixed venous oxygen saturation <60%, in combination with progressive renal failure, should trigger a diagnostic work-up in order to identify cardiac defects that can be corrected or to list the patient for transplantation with/without mechanical circulatory support.
Resumo:
Background: The RCP is a 14 French collapsable percutaneous cardiovascular support device positioned in the descending part of the thoracic aorta via the femoral artery. A 10 patient first in man study demonstrated device safety and significant improvement in renal function among high risk PCI patients. We now report haemodynamic and renal efficacy in patients with ADHF.Methods: Prospective non randomised study seeking to recruit 20 patients with ADHF with a need for inotropic or mechanical circulatory support with: i) EF < 30% ii)Cardiac index(CI) < 2.2 L / min / m2 Outcome measures included: 1) Cardiac index (CI) 2) Pulmonary Capillary Wedge Pressure (PCWP) 3) Urine output / serum creatinine 4) Vascular / device complications 5) 30 day mortalityResults: INTERIM ANALYSIS (n=12) The mean age of the study group was 64 years, with a mean baseline creatinine of 193 umol/L, eGFR 38 ml/min. The intended RCP treatment period was 24 hours. During RCP treatment there was a significant mean reduction of PCWP at 4 hours of 17% (25 to 21 mmHg p=0.04). Mean CI increased at 12 hours by 11%, though not reaching significance (1.78 to 1.96 L/min/m2 p=0.08). RCP insertion prompted substantial diuresis. Urine output tripled over the first 12 hours compared to baseline (55 ml/hr vs 213 ml/hr p=0.03). This was associated with significantly improved renal function, a 28% reduction in serum creatinine at 12 hours (193 to 151 umol/L p=0.003), and a increase in eGFR from 38 ml/min to 50 ml/min (p=0.0007). 2 patients previously refused cardiac transplantation were reassessed and successfully transplanted within 9 months of RCP treatment on the basis of demonstrable renal reversibility. There were no vascular or device complications. There were 2 deaths at 30 days, one from multi-organ failure and sepsis, and one from intractable heart failure - neither were device related.Conclusion: RCP support in ADHF patients was associated with improved haemodynamics, and an improvement in renal function. The Reitan Catheter Pump may have a role in providing percutaneous cardiovascular and renal support in the acutely decompensated cardiac patient, and may have a role in suggesting renal reversibility in potential cardiac transplant patients. Further data will be reported at recruitment completion.
Resumo:
BACKGROUND: Half of the patients with end-stage heart failure suffer from persistent atrial fibrillation (AF). Atrial kick (AK) accounts for 10-15% of the ejection fraction. A device restoring AK should significantly improve cardiac output (CO) and possibly delay ventricular assist device (VAD) implantation. This study has been designed to assess the mechanical effects of a motorless pump on the right chambers of the heart in an animal model. METHODS: Atripump is a dome-shaped biometal actuator electrically driven by a pacemaker-like control unit. In eight sheep, the device was sutured onto the right atrium (RA). AF was simulated with rapid atrial pacing. RA ejection fraction (EF) was assessed with intracardiac ultrasound (ICUS) in baseline, AF and assisted-AF status. In two animals, the pump was left in place for 4 weeks and then explanted. Histology examination was carried out. The mean values for single measurement per animal with +/-SD were analysed. RESULTS: The contraction rate of the device was 60 per min. RA EF was 41% in baseline, 7% in AF and 21% in assisted-AF conditions. CO was 7+/-0.5 l min(-1) in baseline, 6.2+/-0.5 l min(-1) in AF and 6.7+/-0.5 l min(-1) in assisted-AF status (p<0.01). Histology of the atrium in the chronic group showed chronic tissue inflammation and no sign of tissue necrosis. CONCLUSIONS: The artificial muscle restores the AK and improves CO. In patients with end-stage cardiac failure and permanent AF, if implanted on both sides, it would improve CO and possibly delay or even avoid complex surgical treatment such as VAD implantation.
Resumo:
Decompensated heart failure, either acute (cardiogenic shock) or chronic (terminal heart failure) may become refractory to conventional therapy, then requiring mechanical assistance of the failing heart to improve hemodynamics. In the acute setting, aortic balloon counterpulsation is used as first line therapy. In case of failure, other techniques include the extracorporal membrane oxygenator or a percutaneous left ventricular assist device, such as the TandemHeart or the Impella. In chronic heart failure, long-term left ventricular assist devices can be surgically implanted. The continuous flow devices give here the best results. The aim of the present review article is to present with some details the various methods of mechanical left ventricle assistance to which the intensivist may be confronted in his daily practice.
Resumo:
The failure mechanism of a voided CFRP 0-90° cross-ply laminate under tensile loads applied in one direction was studied in this Final Degree Project. For this purpose, voided coupons were manufactured for being tested and a FEA was done. In both investigations, voids were placed in 90º and 0º direction, in order to understand the void location influence. On the one hand, the behaviour of the voided laminates was investigated through a FEM in order to preview the stress distribution within the material. On the other hand, voided specimens where manufactured by applying blowing agent in between the inner layers. These specimens were tested by a quasi-static step wise tensile test where data showing its real behaviour was collected. Specimens were X-rayed after each step of the test in order to investigate the failure mechanism of the composite. Data from the test was studied so that relations such as strength of the laminates, crack density per stress, void length per first crack at the void and void area per first crack at the specimen could be characterized
Resumo:
Most forms of myopathy may involve the respiratory muscles and progress to respiratory failure. However, the diagnosis of myopathy is seldom considered in an adult patient with no history of muscle disease and presenting with respiratory failure. Nemaline myopathy (NM) is a rare disorder characterized by symmetrical diffuse muscle weakness and rod-like nemaline bodies in muscle fibers. Respiratory muscle involvement is a major determinant of mortality in congenital NM, but is rare in late onset NM. Here, we report that acute or chronic respiratory failure may be caused by NM in subjects with no known history of muscle disease. Adult-onset NM was diagnosed in a 67-year-old woman with chronic respiratory insufficiency. Late onset childhood NM was revealed by respiratory failure in twin sisters aged 31. The diagnosis was established by muscle biopsy and electron microscopy (and mutations in the nebulin gene in the two sisters). Long-term clinical improvement was obtained with non-invasive ventilation (NIV) in the three patients. In conclusion, respiratory failure in an adult patient with no known history may correspond to NM with diaphragm involvement. Long-term outcome may be favorable with NIV.
Resumo:
Background:¦Infection after total or partial hip arthroplasty (HA) leads to significant long-term morbidity and high healthcare cost. We evaluated reasons for treatment failure of different surgical modalities in a 12-year prosthetic hip joint infection cohort study.¦Method:¦All patients hospitalized at our institution with infected HA were included either retrospectively (1999-‐2007) or prospectively¦(2008-‐2010). HA infection was defined as growth of the same microorganism in ≥2 tissues or synovialfluid culture, visible purulence, sinus tract or acute inflammation on tissue histopathology. Outcome analysis was performed at outpatient visits, followed by contacting patients, their relatives and/or treating physicians afterwards.¦Results:¦During the study period, 117 patients with infected HA were identified. We excluded 2 patients due to missing data. The average age was 69 years (range, 33-‐102 years); 42% were female. HA was mainly performed for osteoarthritis (n=84), followed by trauma (n=22), necrosis (n=4), dysplasia(n=2), rheumatoid arthritis (n=1), osteosarcoma (n=1) and tuberculosis (n=1). 28 infections occurred early(≤3 months), 25 delayed (3-‐24 months) and 63 late (≥24 months after surgery). Infected HA were¦treated with (i) two-‐stage exchange in 59 patients (51%, cure rate: 93%), (ii) one-‐stage exchange in 5 (4.3%, cure rate: 100%), (iii) debridement with change of mobile parts in 18 (17%, cure rate: 83%), (iv) debridement without change of mobile¦parts in 17 (14%, cure rate : 53% ), (v) Girdlestone in 13 (11%, cure rate: 100%), and (vi) two-‐stage exchange followed by¦removal in 3 (2.6%). Patients were followed for an average of 3.9 years (range, 0.1 to 9 years), 7 patients died unrelated to the infected HA. 15 patients (13%) needed additional operations, 1 for mechanical reasons(dislocation of spacer) and 14 for persistent infection: 11 treated with debridement and retention (8 without change; and 3 with change of mobile parts) and 3 with two-‐stage exchange. The average number of surgery was 2.2 (range, 1 to 5). The infection was finally eradicated in all patients, but the functional outcome remained unsatisfactory in 20% (persistent pain or impaired mobility due to spacer or Girdlestone situation).¦Conclusions:¦Non-‐respect of current treatment concept leads to treatment failure with subsequent operations. Precise analysis of each treatment failure can be used for improving the treatment algorithm leading to better results.
Resumo:
Given that clay-rich landslides may become mobilized, leading to rapid mass movements (earthflows and debris flows), they pose critical problems in risk management worldwide. The most widely proposed mechanism leading to such flow-like movements is the increase in water pore pressure in the sliding mass, generating partial or complete liquefaction. This solid-to-liquid transition results in a dramatic reduction of mechanical rigidity in the liquefied zones, which could be detected by monitoring shear wave velocity variations. With this purpose in mind, the ambient seismic noise correlation technique has been applied to measure the variation in the seismic surface wave velocity in the Pont Bourquin landslide (Swiss Alps). This small but active composite earthslide-earthflow was equipped with continuously recording seismic sensors during spring and summer 2010. An earthslide of a few thousand cubic meters was triggered in mid-August 2010, after a rainy period. This article shows that the seismic velocity of the sliding material, measured from daily noise correlograms, decreased continuously and rapidly for several days prior to the catastrophic event. From a spectral analysis of the velocity decrease, it was possible to determine the location of the change at the base of the sliding layer. These results demonstrate that ambient seismic noise can be used to detect rigidity variations before failure and could potentially be used to predict landslides.
Resumo:
Infection of total hip arthroplasties (THA) leads to significant long-termmorbidity and high healthcare costs. We evaluated the differentreasons for treatment failure using different surgical modalities in a12-year prosthetic joint infection cohort study.Method: All patients hospitalized at our institution with infected THAwere included either retrospectively (1999-2007) or prospectively(2008-2010). THA infection was defined as growth of the same microorganismin ≥2 tissue or synovial fluid culture, visible purulence, sinustract or acute inflammation on tissue histopathology. Outcome analysiswas performed at outpatient visits, followed by contacting patients,their relatives and/or treating physicians afterwards.Results: During the study period, 117 patients with THA were identified.We exclude 2 patients due to missing data. The median age was69 years (range, 33-102 years); 42% were women. THA was mainlyperformed for osteoarthritis (n = 84), followed by trauma (n = 22),necrosis (n = 4), dysplasia (n = 2), rheumatoid arthritis (n = 1), osteosarcoma(n = 1) and tuberculosis (n = 1). 28 infections occurred early(≤3 months), 25 delayed (3-24 months) and 63 late (≥24 months aftersurgery). Infected THA were treated with (i) two-stage exchange in59 patients (51%, cure rate: 93%), (ii) one-stage exchange in 5 (4.3%,cure rate: 100%), (iii) debridement with change of mobile parts in18 (17%, cure rate: 83%), (iv) debridement without change of mobileparts in 17 (14%, cure rate: 53% ), (v) Girdlestone in 13 (11%, curerate: 100%), and (vi) two-stage exchange followed by removal in 3(2.6%). Patients were followed for a mean of 3.9 years (range, 0.1 to 9years), 7 patients died unrelated to the infected THA. 15 patients (13%)needed additional operations, 1 for mechanical reasons (dislocationof spacer) and 14 for persistent infection: 11 treated with debridementand retention (8 without change and 3 with change of mobile parts)and 3 with two-stage exchange. The mean number of surgery was 2.2(range, 1 to 5). The infection was finally eradicated in all patients, butthe functional outcome remained unsatisfactory in 20% (persistentpain or impaired mobility due to spacer or Girdlestone situation).Conclusions: Non-respect of current treatment concept leads totreatment failure with subsequent operations. Precise analysis of eachtreatment failures can be used for improving the treatment algorithmleading to better results.
Resumo:
We describe a device made of artificial muscle for the treatment of end-stage heart failure as an alternative to current heart assist devices. The key component is a matrix of nitinol wires and aramidic fibers called Biometal muscle (BM). When heated electrically, it produces a motorless, smooth, and lifelike motion. The BM is connected to a carbon fiber scaffold, tightening the heart and providing simultaneous assistance to the left and right ventricles. A pacemaker-like microprocessor drives the contraction of the BM. We tested the device in a dedicated bench model of diseased heart. It generated a systolic pressure of 75 mm Hg and ejected a maximum of 330 ml/min, with an ejection fraction of 12%. The device required a power supply of 6 V, 250 mA. This could be the beginning of an era in which BMs integrate or replace the mechanical function of natural muscles.