949 resultados para FREE FATTY ACIDS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

FFA2 is a G protein-coupled receptor that responds to short chain fatty acids (SCFAs) and has generated interest as a therapeutic target for metabolic and inflammatory conditions. However, definition of its functions has been slowed by a dearth of selective ligands that can distinguish it from the closely related FFA3. At present, the only selective ligands described for FFA2 suffer from either poor potency, altered signaling due to allosteric modes of action, or a lack of function at non-human orthologs of the receptor. To address the need for novel selective ligands, we synthesized two compounds potentially having FFA2 activity and examined the molecular basis of their function. These compounds were confirmed to be potent and selective FFA2 agonists that interact with the orthosteric binding site. A combination of ligand structure-activity relationship, pharmacological analysis, homology modeling, species ortholog comparisons and mutagenesis studies were then employed to define the molecular basis of selectivity and function of these ligands. From this, we identified key residues within both extracellular loop 2 (ECL2) and the transmembrane domain (TM) regions of FFA2 critical for ligand function. One of these ligands was active with reasonable potency at rodent orthologs of FFA2 and demonstrated the role of FFA2 in the regulation of lipolysis in murine 3T3-L1 adipocytes. Together, these findings describe the first potent and selective FFA2 orthosteric agonists and demonstrate key aspects of ligand interaction within the orthosteric binding site of FFA2 that will be invaluable in future ligand development at this receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To examine the effects of the consumption of fish oils on the gene expression of lipoprotein lipase (LPL, EC 3.1.1.34) in human adipose tissue. In order to measure LPL mRNA in adipose tissue samples obtained by needle biopsy from human volunteers a competitive, reverse transcriptase PCR (RT-PCR) protocol was developed. Design: A randomised controlled, single blind cross over dietary study which compared the effects of a low level n-3 polyunsaturated fatty acids (PUFA) using normal foods enriched with eicosapentaenoic (EPA) and docosahexaenoic (DHA) (test diet), with non-enriched but otherwise identical foods (control). The diets were consumed for a period of 22 d with a wash out period of 5 months between the diets. Setting: Free-living individuals associated with the University of Surrey. Subjects: Six male subjects with a mean (±sd) age of 51.2±3.6 y were recruited. Major Outcome Measures: Pre-and postprandial blood samples were taken for the measurement of triacylglycerol (TAG), postheparin LPL activity and adipose tissue samples for the measurement of LPL mRNA levels. Results: Mean LPL expression values were 4.12´105 molecules of LPL mRNA per ng total RNA on the control diet and 4.60´105 molecules of LPL mRNA per ng total RNA on the n-3 PUFA enriched (test) diet. There was no significant difference between the levels of LPL expression following each diet, consistent with the lack of change in TAG levels in response to increased dietary n-3 PUFA intake. However, the change in LPL expression (Test-Control diet) correlated significantly with the change in fasting TAG levels (P=0.03, R=-0.87 and R2=0.75) and with the total area under the TAG-time response curve (P=0.003, R=-0.96 and R2=0.92) in individuals. Conclusions: These findings, although based on a small number of subjects, suggest that LPL expression may be a determinant of plasma TAG levels. The development of this methodology should allow further elucidation of the effects of dietary manipulation and disease processes on lipid clearance and regulation in human subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that lipids are transferred from lymphocytes (Ly) to different cell types including macrophages. enterocytes, and pancreatic beta cells in co-culture This study investigated whether [(14)C]-labeled fatty acids (FA) can be transferred from Ly to skeletal muscle (SM), and the effects of exercise on such phenomenon Ly obtained from exercised (EX) and control (C) male Wistar rats were preloaded with the [(14)C]-labeled free FA palmitic (PA), oleic (OA), linoleic (LA), or arachidonic (AA) Radioactively loaded Ly were then co-cultured with SM from the same Ly donor animals Substantial amounts of FA were transferred to SM being the profile PA = OA > AA > LA to the C group. and PA > OA > LA > AA to the EX group These FA were incorporated predominantly as phospholipids (PA = 66 75%: OA = 63 09%, LA = 43 86%, AA - 47 40%) in the C group and (PA = 63 99% OA = 52 72%, LA = 55 99%, AA = 63 40%) in the EX group Also in this group, the remaining radioactivity from AA, LA, and OA acids was mainly incorpoiated in structural and energetic lipids These results support the hypothesis that Ly are able to export lipids to SM in co-culture Furthermore. exercise modulates the lipid transference profile, and its incorporation on SM The overall significance of this phenomenon in vivo remains to be elucidated. Copyright (C) 2010 John Wiley & Sons, Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In two experiments, each with 32 crossbred ([Merino x Border Leicester] x Poll Dorset) wether lambs (26 to 33 kg weight range), animals were randomly assigned to one of four treatments. A mixture of lucerne chaff:oaten chaff was used as a basal diet, offered in different ratios. Animals were allowed to consume on a free-access basis in Exp. 1 or 90% of ad libitum intake in Exp. 2 in order to provide a low- (6.5 MJ ME/d) and medium- (9.5 MJ ME/d) quality basal diet, respectively. Isoenergetic amounts of lipid supplements, fish meal (80 g DM), canola meal (84 g DM), and soy meal (75 g DM) were tested in Exp. 1. In Exp. 2, fish meal (9% DM), unprotected rapeseed (7% DM), and protected canola seed (6% DM) were fed as supplements. At the end of 53-d (Exp. 1) or 46-d (Exp. 2) experimental periods, lambs were slaughtered at a commercial abattoir and at 24 h postmortem longissimus thoracis (LT) muscle was collected for the analysis of fatty acid (FA) composition of structural phospholipid and storage triglyceride fractions. Fish meal diet increased LT muscle long-chain n-3 FA content by 27% (P < 0.02) in Exp. I and 30% (P < 0.001) in Exp. 2 compared with lambs fed the basal diet, but fish meal decreased (P < 0.01) the n-6 FA content only in Exp. 1. Soy meal and protected canola seed diets increased (P < 0.01) LT muscle n-6 FA content but did not affect long-chain n-3 FA content. Longissimus thoracis muscle long-chain n-3 FA were mainly deposited in structural phospholipid, rather than in storage triglyceride. In both Exp. 1 and Exp. 2, the ratio of n-6:n-3 FA in LT muscle was lowest (P < 0.01) in lambs fed fish meal supplement compared with all other treatments. Protected canola seed diet increased the ratio of n-6:n-3 FA (P < 0.01) and PUFA:saturated fatty acid (P < 0.03) content from those animals fed the basal, fish meal, and unprotected rapeseed diets in Exp. 2. This was due to an increase in muscle n-6 FA content, mainly linoleic acid, of both phospholipid (P < 0.001) and triglyceride (P < 0.01) fractions and not to an increase in muscle n3 FA content. The results indicate that by feeding fish meal supplement, the essential n-3 FA can be increased while lowering the ratio of n-6:n-3 content in lamb meat to an extent that could affect nutritional value, attractiveness, and the economic value of meat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consumption of a Western diet rich in saturated fats is associated with obesity and insulin resistance. In some insulin-resistant phenotypes this is associated with accumulation of skeletal muscle fatty acids. We examined the effects of diets high in saturated fatty acids (Sat) or n-6 polyunsaturated fatty acids (PUFA) on skeletal muscle fatty acid metabolite accumulation and whole-body insulin sensitivity. Male Sprague-Dawley rats were fed a chow diet (16% calories from fat, Con) or a diet high (53%) in Sat or PUFA for 8 wk. Insulin sensitivity was assessed by fasting plasma glucose and insulin and glucose tolerance via an oral glucose tolerance test. Muscle ceramide and diacylglycerol (DAG) levels and triacylglycerol (TAG) fatty acids were also measured. Both high-fat diets increased plasma free fatty acid levels by 30%. Compared with Con, Sat-fed rats were insulin resistant, whereas PUFA-treated rats showed improved insulin sensitivity. Sat caused a 125% increase in muscle DAG and a small increase in TAG. Although PUFA also resulted in a small increase in DAG, the excess fatty acids were primarily directed toward TAG storage (105% above Con). Ceramide content was unaffected by either high-fat diet. To examine the effects of fatty acids on cellular lipid storage and glucose uptake in vitro, rat L6 myotubes were incubated for 5 h with saturated and polyunsaturated fatty acids. After treatment of L6 myotubes with palmitate (C16:0), the ceramide and DAG content were increased by two- and fivefold, respectively, concomitant with reduced insulin-stimulated glucose uptake. In contrast, treatment of these cells with linoleate (C18:2) did not alter DAG, ceramide levels, and glucose uptake compared with controls (no added fatty acids). Both 16:0 and 18:2 treatments increased myotube TAG levels (C18:2 vs. C16:0, P < 0.05). These results indicate that increasing dietary Sat induces insulin resistance with concomitant increases in muscle DAG. Diets rich in n-6 PUFA appear to prevent insulin resistance by directing fat into TAG, rather than other lipid metabolites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary polyunsaturated fatty acids (PUFA) play a key role in regulating delta-6 desaturase (D6D), the key enzyme for long-chain PUFA biosynthesis. Nevertheless, the extent of their effects on this enzyme remains controversial and difficult to assess. It has been generally admitted that C18 unsaturated fatty acids (UFAs) regulate negatively delta-6 desaturase (D6D). This inhibition has been evidenced in regard to a high glucose/fat free (HG/FF) diet used in reference. However, several nutritional investigations did not evidence any inhibition of desaturases when feeding fatty acids.

Because the choice of the basal diet appeared to be of primary importance in such experiments, our goal was to reconsider the specific role of dietary UFAs on D6D regulation, depending on nutritional conditions. For that, sixteen adult Wistar rats were fed purified linoleic acid, α-linolenic acid or oleic acid, included in one of two diets at 4% by weight: an HG/FF or a high starch base (HS) where the pure UFAs replaced a mixed vegetable oil. Our results showed first that D6D specific activity was significantly greater when measured in presence of an HG/FF than with an HS/4% vegetable oil diet. Secondly, we found that linoleic and alpha-linolenic acids added to HG/FF reduced the specific activity of D6D. In contrast, when pure UFAs were added to an HS base, D6D specific activities remained unchanged or increased. Concordant results were obtained on D6D mRNA expression.

Altogether, this study evidenced the importance of the nutritional status in D6D regulation by C18 UFAs: when used as control, HG/FF diet stimulates D6D compared with a standard control diet containing starch and 4% fats, leading to an overestimation of the D6D regulation by UFAs. Then, UFAs should be considered as repressors for unsaturated fatty acid biosynthesis only in very specific nutritional conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 The main focus of this research was to investigate possible link between zinc, DHA, apoptosis and cell survival. Study also analyses the benefits of omega-3 FA’s and the link between free zinc availability to neurodegeneration. Furthermore, this study was focused on developing a suitable cell culture model for neuronal research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diets rich in saturated fatty acids are one of the most important causes of atherosclerosis in men, and have been replaced with diets rich in unsaturated fatty acids (UFA) for the prevention of this disorder. However, the effect of UFA on myocardial performance, metabolism and morphology has not been completely characterized. The objective of the present investigation was to evaluate the effects of a UFA-rich diet on cardiac muscle function, oxidative stress, and morphology. Sixty-day-old male Wistar rats were fed a control (N = 8) or a UFA-rich diet (N = 8) for 60 days. Myocardial performance was studied in isolated papillary muscle by isometric and isotonic contractions under basal conditions after calcium chloride (5.2 mM) and ss-adrenergic stimulation with 1.0 mu M isoproterenol. Fragments of the left ventricle free wall were used to study oxidative stress and were analyzed by light microscopy, and the myocardial ultrastructure was examined in left ventricle papillary muscle. After 60 days the UFA-rich diet did not change myocardial function. However, it caused high lipid hydroperoxide (176 +/- 5 vs 158 +/- 5, P < 0.0005) and low catalase (7 +/- 1 vs 9 +/- 1, P < 0.005) and superoxide-dismutase (18 +/- 2 vs 27 +/- 5, P < 0.005) levels, and discrete morphological changes in UFA-rich diet hearts such as lipid deposits and mitochondrial membrane alterations compared to control rats. These data show that a UFA-rich diet caused myocardial oxidative stress and mild structural alterations, but did not change mechanical function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: the potential pathogenicity of free radicals may have a pivotal role in ulcerative colitis. Fish oil omega-3 fatty acids exert anti-inflammatory effects on patients with ulcerative colitis (UC), but the precise mechanism of the action of fish oil on oxidative stress is still controversial. The aim of the present work was to verify the blood oxidative stress in patients with UC and determine whether the association of sulfasalazine to fish oil omega-3 fatty acids is more effective than isolated use of sulfasalazine to reduce the oxidative stress.METHODS:, Nine patients (seven female and two male; me. an age = 40 +/- 11 y) with mild or moderate active UC were studied in a randomized crossover design. In addition to their usual medication (2 g/d of sulfasalazine), they received fish oil omega-3 fatty acids (4.5 g/d) or placebo for 2-mo treatment periods that were separated by 2 mo, when they only received sulfasalazine. Nine healthy individuals served as control subjects to study the oxidative stress status. Disease activity was assessed by laboratory indicators (C-reactive protein, alpha(1)-acid glycoprotein, alpha(1)-antitrypsin, erythrocyte sedimentation rate, albumin, hemoglobin, and platelet count), sigmoidoscopy, and histology scores. Analysis of oxidative stress was assessed by plasma chemiluminescence and erythrocyte lipid peroxidation, both induced by tert butyl hydroperoxide (t-BuOOH) and by plasma malondialdehyde. Antioxidant status was assayed by total plasma antioxidant capacity (TRAP) and microsomal lipid peroxidation inhibition (LPI). Superoxide dismutase (SOD) and catalase erythrocyte enzymatic activities were also determined.RESULTS: No significant changes were observed in any laboratory indicator or in the sigmoidoscopy or histology scores, with the exception of erythrocyte sedimentation rate, which decreased with both treatments. Oxidative stress was demonstrated by significant decreases in TRAP and LPI levels, increased chemiluminescence induced by t-BuOOH, and higher SOD activity in patients with UC. Treatment with fish oil omega-3 fatty acids reverted the chemiluminescence induced by t-BuOOH and LPI to baseline levels but that did not occur when patients received only sulfasalazine. Levels of plasma malondialdehyde, erythrocyte lipid peroxidation, and catalase were not different from those in the control group.CONCLUSIONS: the results indicated that plasma oxidative stress occurs in patients with UC, and there was a significant decrease when the patients used sulfasalazine plus fish oil omega-3 fatty acids. However, there was no improvement in most laboratory indicators, sigmoidoscopy, and histology scores. The results suggested that omega-3 fatty acids may act as free radical scavengers protecting the patients against the overall effect of oxidative stress. (C)Elsevier B.V. 2003.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The additional effect of omega-3 supplementation in association with lifestyle modification program (LSMP) in free living-adults was evaluated.We studied 39 adults (control group with LSMP (G1, n = 16) and LSMP plus supplementation of 3 g of fish oil per day (360 mg of docosahexaenoic acid and 540 mg of eicosapentaenoic acid) (G2, n = 23)) during 20 weeks. The fish oil group showed a significant decrease in waist circumference (1.3%) followed by metabolic syndrome reduction (29%) mainly due to normalization of blood pressure (33.3%) and triacylglycerol (27.3%). Omega-3 supplementation provided additional benefits to LSMP in the resolution of metabolic syndrome

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of atherosclerosis and the inflammatory response were investigated in LDLr-KO mice on three high-fat diets (40% energy as fat) for 16 weeks: trans (TRANS), saturated (SAFA) or omega-6 polyunsaturated (PUFA) fats. The following parameters were measured: plasma lipids, aortic root total cholesterol (TC), lesion area (Oil Red-O), ABCA1 content and macrophage infiltration (immunohistochemistry), collagen content (Picrosirius-red) and co-localization of ABCA1 and macrophage (confocal microscopy) besides the plasma inflammatory markers (IL-6, TNF-alpha) and the macrophage inflammatory response to lipopolysaccharide from Escherichia coli (LPS). As expected, plasma TC and TG concentrations were lower on the PUFA diet than on TRANS or SAFA diets. Aortic intima macrophage infiltration, ABCA1 content, and lesion area on PUFA group were lower compared to TRANS and SAFA groups. Macrophages and ABCA1 markers did not co-localize in the atherosclerotic plaque, suggesting that different cell types were responsible for the ABCA1 expression in plaques. Compared to PUFA, TRANS and SAFA presented higher collagen content and necrotic cores in atherosclerotic plaques. In the artery wall, TC was lower on PUFA compared to TRANS group; free cholesterol was lower on PUFA compared to TRANS and SAFA; cholesteryl ester concentration did not vary amongst the groups. Plasma TNF-alpha concentration on PUFA and TRANS-fed mice was higher compared to SAFA. No difference was observed in IL-6 concentration amongst groups. Regarding the macrophage inflammatory response to LPS, TRANS and PUFA presented higher culture medium concentrations of IL-6 and TNF-alpha as compared to SAFA. The PUFA group showed the lowest amount of the anti-inflammatory marker IL-10 compared to TRANS and SAFA groups. In conclusion, PUFA intake prevented atherogenesis, even in a pro-inflammatory condition. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Most marine fish larvae require high amounts of n-3 HUFA (highly unsaturated fatty acids) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Watanabe, 1982; Izquierdo, 1996). Fish larvae tissue lipids are also very high in n-3 HUFA, what implies a higher risk of peroxidation (Sargent et al. 1999) and cellular damage (Kanazawa, 1991), requiring then antioxidants to protect them intra- and extra-cellularly from free radical compounds. Vitamin E (Vit E) functions as a chain breaking antioxidant, reacting with the lipid peroxide radical produced and preventing the further reaction with a new PUFA. Hence their requirements are related with the dietary and tissue PUFA contents. The objective of the present study was to determine the effect of dietary Vit E on gilthead sea bream and sea bass survival, growth and stress, at different n-3 HUFA levels.