978 resultados para FIXED-POINT


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main purpose of this work is to study fixed points of fiber-preserving maps over the circle S-1 for spaces which axe fibrations over S-1 and the fiber is the torus T. For the case where the fiber is a surface with nonpositive Euler characteristic, we establish general algebraic conditions, in terms of the fundamental group and the induced homomorphism, for the existence of a deformation of a map over S-1 to a fixed point, free map. For the case where the fiber is a torus, we classify all maps over S-1 which can be deformed fiberwise to a fixed point free map.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main purpose of this work is to study fixed points of fiber-preserving maps over the circle S(1) for spaces which are fiber bundles over S(1) and the fiber is the Klein bottle K. We classify all such maps which can be deformed fiberwise to a fixed point free map. The similar problem for torus fiber bundles over S(1) has been solved recently.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Convergence to a period one fixed point is investigated for both logistic and cubic maps. For the logistic map the relaxation to the fixed point is considered near a transcritical bifurcation while for the cubic map it is near a pitchfork bifurcation. We confirmed that the convergence to the fixed point in both logistic and cubic maps for a region close to the fixed point goes exponentially fast to the fixed point and with a relaxation time described by a power law of exponent -1. At the bifurcation point, the exponent is not universal and depends on the type of the bifurcation as well as on the nonlinearity of the map.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Let T : M → M be a smooth involution on a closed smooth manifold and F = n j=0 F j the fixed point set of T, where F j denotes the union of those components of F having dimension j and thus n is the dimension of the component of F of largest dimension. In this paper we prove the following result, which characterizes a small codimension phenomenon: suppose that n ≥ 4 is even and F has one of the following forms: 1) F = F n ∪ F 3 ∪ F 2 ∪ {point}; 2) F = F n ∪ F 3 ∪ F 2 ; 3) F = F n ∪ F 3 ∪ {point}; or 4) F = F n ∪ F 3 . Also, suppose that the normal bundles of F n, F 3 and F 2 in M do not bound. If k denote the codimension of F n, then k ≤ 4. Further, we construct involutions showing that this bound is best possible in the cases 2) and 4), and in the cases 1) and 3) when n is of the form n = 4t, with t ≥ 1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN] The purpose of this paper is to provide sufficient conditions for the existence of a unique best proximity point for Geraghty-contractions.Our paper provides an extension of a result due to Geraghty (Proc. Am. Math. Soc. 40:604-608, 1973).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we are concerned with determining values of lambda, for which there exist positive solutions of the nonlinear eigenvalue problem [GRAPHICS] where a, b, c, d is an element of [0, infinity), xi(i) is an element of (0, 1), alpha(i), beta(i) is an element of [0 infinity) (for i is an element of {1, ..., m - 2}) are given constants, p, q is an element of C ([0, 1], (0, infinity)), h is an element of C ([0, 1], [0, infinity)), and f is an element of C ([0, infinity), [0, infinity)) satisfying some suitable conditions. Our proofs are based on Guo-Krasnoselskii fixed point theorem. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Здравко Д. Славов - В тази статия се разглежда математически модел на икономика с фиксирани общи ресурси, както и краен брой агенти и блага. Обсъжда се ролята на някои предположения за отношенията на предпочитание на икономическите агенти, които влияят на характеристиките на оптимално разпределените дялове. Доказва се, че множеството на оптимално разпределените дялове е свиваемо и притежава свойството на неподвижната точка.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 54H25, 55M20.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Given a continuous map f : K -> M from a 2-dimensional CW complex into a closed surface, the Nielsen root number N(f) and the minimal number of roots mu(f) of f satisfy N(f) <= mu(f). But, there is a number mu(C)(f) associated to each Nielsen root class of f, and an important problem is to know when mu(f) = mu(C)(f)N(f). In addition to investigate this problem, we determine a relationship between mu(f) and mu((f) over tilde), when (f) over tilde f is a lifting of f through a covering space, and we find a connection between this problems, with which we answer several questions related to them when the range of the maps is the projective plane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the phase diagram of a discrete version of the Maier-Saupe model with the inclusion of additional degrees of freedom to mimic a distribution of rodlike and disklike molecules. Solutions of this problem on a Bethe lattice come from the analysis of the fixed points of a set of nonlinear recursion relations. Besides the fixed points associated with isotropic and uniaxial nematic structures, there is also a fixed point associated with a biaxial nematic structure. Due to the existence of large overlaps of the stability regions, we resorted to a scheme to calculate the free energy of these structures deep in the interior of a large Cayley tree. Both thermodynamic and dynamic-stability analyses rule out the presence of a biaxial phase, in qualitative agreement with previous mean-field results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyze renormalizability properties of noncommutative (NC) theories with a bifermionic NC parameter. We introduce a new four-dimensional scalar field model which is renormalizable at all orders of the loop expansion. We show that this model has an infrared stable fixed point (at the one-loop level). We check that the NC QED (which is one-loop renormalizable with a usual NC parameter) remains renormalizable when the NC parameter is bifermionic, at least to the extent of one-loop diagrams with external photon legs. Our general conclusion is that bifermionic noncommutativity improves renormalizability properties of NC theories.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a nonlinear system and show the unexpected and surprising result that, even for high dissipation, the mean energy of a particle can attain higher values than when there is no dissipation in the system. We reconsider the time-dependent annular billiard in the presence of inelastic collisions with the boundaries. For some magnitudes of dissipation, we observe the phenomenon of boundary crisis, which drives the particles to an asymptotic attractive fixed point located at a value of energy that is higher than the mean energy of the nondissipative case and so much higher than the mean energy just before the crisis. We should emphasize that the unexpected results presented here reveal the importance of a nonlinear dynamics analysis to explain the paradoxical strategy of introducing dissipation in the system in order to gain energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we study the existence and regularity of mild solutions for a damped second order abstract functional differential equation with impulses. The results are obtained using the cosine function theory and fixed point criterions. (C) 2009 Elsevier Ltd. All rights reserved.