908 resultados para FINITE-ELEMENT MODEL


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new cold-formed and resistance welded section known as the Hollow Flange Beam (HFB) has been developed recently in Australia. In contrast to the common lateral torsional buckling mode of I-beams, this unique section comprising two stiff triangular flanges and a slender web is susceptible to a lateral distortional buckling mode of failure involving lateral deflection, twist, and cross-section change due to web distortion. This lateral distortional buckling behavior has been shown to cause significant reduction of the available flexural capacity of HFBs. An investigation using finite element analyses and large scale experiments was carried out into the use of transverse web plate stiffeners to improve the lateral buckling capacity of HFBs. This paper presents the details of the finite element model and analytical results. The experimental procedure and results are outlined in a companion paper at this conference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new cold-formed and resistance-welded section known as the hollow flange beam (HFB) has been developed recently in Australia. In contrast to the common lateral-torsional buckling mode of I-beams, this unique section comprising two stiff triangular flanges and a slender web is susceptible to a lateral-distortional buckling mode of failure involving lateral deflection, twist, and cross-section change due to web distortion. This lateral-distortional buckling behavior has been shown to cause significant reduction of the available flexural capacity of HFBs. An investigation using finite-element analyses and large-scale experiments was carried out into the use of transverse web plate stiffeners to improve the lateral buckling capacity of HFBs. This paper presents the details of the finite-element model and analytical results. The experimental procedure and results are outlined in a companion paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a spinal deformity, which may require surgical correction by attaching rods to the patient’s spine using screws inserted into the vertebrae. Complication rates for deformity correction surgery are unacceptably high. Determining an achievable correction without overloading the adjacent spinal tissues or implants requires an understanding of the mechanical interaction between these components. We have developed novel patient specific modelling software to create individualized finite element models (FEM) representing the thoracolumbar spine and ribcage of scoliosis patients. We are using these models to better understand the biomechanics of spinal deformity correction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element (FE) model studies have made important contributions to our understanding of functional biomechanics of the lumbar spine. However, if a model is used to answer clinical and biomechanical questions over a certain population, their inherently large inter-subject variability has to be considered. Current FE model studies, however, generally account only for a single distinct spinal geometry with one set of material properties. This raises questions concerning their predictive power, their range of results and on their agreement with in vitro and in vivo values. Eight well-established FE models of the lumbar spine (L1-5) of different research centres around the globe were subjected to pure and combined loading modes and compared to in vitro and in vivo measurements for intervertebral rotations, disc pressures and facet joint forces. Under pure moment loading, the predicted L1-5 rotations of almost all models fell within the reported in vitro ranges, and their median values differed on average by only 2° for flexion-extension, 1° for lateral bending and 5° for axial rotation. Predicted median facet joint forces and disc pressures were also in good agreement with published median in vitro values. However, the ranges of predictions were larger and exceeded those reported in vitro, especially for the facet joint forces. For all combined loading modes, except for flexion, predicted median segmental intervertebral rotations and disc pressures were in good agreement with measured in vivo values. In light of high inter-subject variability, the generalization of results of a single model to a population remains a concern. This study demonstrated that the pooled median of individual model results, similar to a probabilistic approach, can be used as an improved predictive tool in order to estimate the response of the lumbar spine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a nonlinear finite element (FE) model for the analysis of very high strength (VHS) steel hollow sections wrapped by high modulus carbon fibre rein forced polymer (CFRP) sheets. The bond strength of CFRP wrapped VHS circular steel hollow section under tension is investigated using the FE model. The three dimensional FE model by Nonlinear static analysis has been carried out by Strand 7 finite element software. The model is validated by the experimental data obtained from Fawzia et al [1]. A detail parametric study has been performed to examine the effect of number of CFRP layers, different diameters of VHS steel tube and different bond lengths of CFRP sheet. The analytical model developed by Fawzia et al. [1] has been used to determine the load carrying capacity of different diameters of CFRP strengthened VHS steel tube by using the capacity from each layer of CFRP sheet. The results from FE model have found in reasonable agreement with the analytical model developed by Fawzia et al [1]. This validation was necessary because the analytical model by Fawzia et al [1] was developed by using only one diameter of VHS steel tube and fixed (five) number of CFRP layers. It can be concluded that the developed analytical model is valid for CFRP strengthened VHS steel tubes with diameter range of 38mm to 100mm and CFRP layer range of 3 to 5 layers. Based on the results it can also be concluded that the effective bond length is consistent for different diameters of steel tubes and different layers of CFRP. Three layers of CFRP is considered most effective wrapping scheme due to the cost effectiveness. Finally the distribution of longitudinal and hoop stress has been determined by the finite element model for different diameters of CFRP strengthened VHS steel tube.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its ability to represent intricate systems with material nonlinearities as well as irregular loading, boundary, geometrical and material domains, the finite element (FE) method has been recognized as an important computational tool in spinal biomechanics. Current FE models generally account for a single distinct spinal geometry with one set of material properties despite inherently large inter-subject variability. The uncertainty and high variability in tissue material properties, geometry, loading and boundary conditions has cast doubt on the reliability of their predictions and comparability with reported in vitro and in vivo values. A multicenter study was undertaken to compare the results of eight well-established models of the lumbar spine that have been developed, validated and applied for many years. Models were subjected to pure and combined loading modes and their predictions were compared to in vitro and in vivo measurements for intervertebral rotations, disc pressures and facet joint forces. Under pure moment loading, the predicted L1-5 rotations of almost all models fell within the reported in vitro ranges; their median values differed on average by only 2° for flexion-extension, 1° for lateral bending and 5° for axial rotation. Predicted median facet joint forces and disc pressures were also in good agreement with previously published median in vitro values. However, the ranges of predictions were larger and exceeded the in vitro ranges, especially for facet joint forces. For all combined loading modes, except for flexion, predicted median segmental intervertebral rotations and disc pressures were in good agreement with in vivo values. The simulations yielded median facet joint forces of 0 N in flexion, 38 N in extension, 14 N in lateral bending and 60 N in axial rotation that could not be validated due to the paucity of in vivo facet joint forces. In light of high inter-subject variability, one must be cautious when generalizing predictions obtained from one deterministic model. This study demonstrates however that the predictive power increases when FE models are combined together. The median of individual numerical results can hence be used as an improved tool in order to estimate the response of the lumbar spine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Adolescent idiopathic scoliosis (AIS) is a spinal deformity, which may require surgical correction by attaching rods to the patient’s spine using screws inserted into the vertebrae. Complication rates for deformity correction surgery are unacceptably high. Determining an achievable correction without overloading the adjacent spinal tissues or implants requires an understanding of the mechanical interaction between these components. Our novel patient specific modelling software creates individualized finite element models (FEM) representing the thoracolumbar spine and ribcage of scoliosis patients. We have recently applied the model to investigate the influence of increasing magnitudes of surgically applied corrective force on predicted deformity correction...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element analysis (FEA) models of uniaxial loading of pumpkin peel and flesh tissues were developed and validated using experimental results. The tensile model was developed for both linear elastic and plastic material models, the compression model was develop d only with the plastic material model. The outcomes of force versus time curves obtained from FEA models followed similar pattern to the experimental curves however the curve resulted with linear elastic material properties had a higher difference with the experimental curves. The values of predicted forces were determined and compared with the experimental curve. An error indicator was introduced and computed for each case and compared. Additionally Root Mean Square Error (RMSE) values were also calculated for each model and compared. The results of modelling were used to develop material model for peel and flesh tissues in FEA modelling of mechanical peeling of tough skinned vegetables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deep transverse metatarsal ligaments (DTML) play an important role in stabilizing the metatarsal bones and manipulating foot transverse arch deformation. However, the biomechanical research about DTML in the foot maneuver is quite few. Due to the difficulties and lack of better measurement technology for these ligaments experimental monitor, the load transfer mechanism and internal stress state also hadn't been well addressed. The purpose of this study was to develop a detailing foot finite element model including DTML tissues, to investigate the mechanical response of DTML during the landing condition. The DTML was considered as hyperelastic material model was used to represent the nonlinear and nearly incompressible nature of the ligament tissue. From the simulation results, it is clearly to find that the peak maiximal principal stress of DTML was between the third and fourth metatarsals. Meanwhile, it seems the DTML in the middle position experienced higher tension than the sides DTML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An explicit finite element modelling method is formulated using a layered shell element to examine the behaviour of masonry walls subject to out-of-plane loading. Masonry is modelled as a homogenised material with distinct directional properties that are calibrated from datasets of a “C” shaped wall tested under pressure loading applied to its web. The predictions of the layered shell model have been validated using several out-of-plane experimental datasets reported in the literature. Profound influence of support conditions, aspect ratio, pre-compression and opening to the strength and ductility of masonry walls is exhibited from the sensitivity analyses performed using the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an assessment of the flexural behavior of 15 fully/partially prestressed high strength concrete beams containing steel fibers investigated using three-dimensional nonlinear finite elemental analysis. The experimental results consisted of eight fully and seven partially prestressed beams, which were designed to be flexure dominant in the absence of fibers. The main parameters varied in the tests were: the levels of prestressing force (i.e, in partially prestressed beams 50% of the prestress was reduced with the introduction of two high strength deformed bars instead), fiber volume fractions (0%, 0.5%, 1.0% and 1.5%), fiber location (full depth and partial depth over full length and half the depth over the shear span only). A three-dimensional nonlinear finite element analysis was conducted using ANSYS 5.5 [Theory Reference Manual. In: Kohnke P, editor. Elements Reference Manual. 8th ed. September 1998] general purpose finite element software to study the flexural behavior of both fully and partially prestressed fiber reinforced concrete beams. Influence of fibers on the concrete failure surface and stress-strain response of high strength concrete and the nonlinear stress-strain curves of prestressing wire and deformed bar were considered in the present analysis. In the finite element model. tension stiffening and bond slip between concrete and reinforcement (fibers., prestressing wire, and conventional reinforcing steel bar) have also been considered explicitly. The fraction of the entire volume of the fiber present along the longitudinal axis of the prestressed beams alone has been modeled explicitly as it is expected that these fibers would contribute to the mobilization of forces required to sustain the applied loads across the crack interfaces through their bridging action. A comparison of results from both tests and analysis on all 15 specimens confirm that, inclusion of fibers over a partial depth in the tensile side of the prestressed flexural structural members was economical and led to considerable cost saving without sacrificing on the desired performance. However. beams having fibers over half the depth in only the shear span, did not show any increase in the ultimate load or deformational characteristics when compared to plain concrete beams. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a finite-element model is developed in which the nonlinear soil behavior is represented by a hyperbolic relation for static load condition and modified hyperbolic relation, which includes both degradation and gap for a cyclic load condition. Although batter piles are subjected to lateral load, the soil resistance is also governed by axial load, which is incorporated by considering the P-Δ moment and geometric stiffness matrix. By adopting the developed numerical model, static and cyclic load analyses are performed adopting an incremental-iterative procedure where the pile is idealized as beam elements and the soil as elastoplastic spring elements. The proposed numerical model is validated with published laboratory and field pile test results under both static and cyclic load conditions. This paper highlights the importance of the degradation factor and its influence on the soil resistance-displacement (p-y) curve, number of cycles of loading, and cyclic load response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper discusses basically a wave propagation based method for identifying the damage due to skin-stiffener debonding in a stiffened structure. First, a spectral finite element model (SFEM) is developed for modeling wave propagation in general built-up structures, using the concept of assembling 2D spectral plate elements and the model is then used in modeling wave propagation in a skin-stiffener type structure. The damage force indicator (DFI) technique, which is derived from the dynamic stiffness matrix of the healthy stiffened structure (obtained from the SFEM model) along with the nodal displacements of the debonded stiffened structure (obtained from 2D finite element model), is used to identify the damage due to the presence of debond in a stiffened structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work deals with the prediction of stiffness of an Indian nanoclay-reinforced polypropylene composite (that can be termed as a nanocomposite) using a Monte Carlo finite element analysis (FEA) technique. Nanocomposite samples are at first prepared in the laboratory using a torque rheometer for achieving desirable dispersion of nanoclay during master batch preparation followed up with extrusion for the fabrication of tensile test dog-bone specimens. It has been observed through SEM (scanning electron microscopy) images of the prepared nanocomposite containing a given percentage (3–9% by weight) of the considered nanoclay that nanoclay platelets tend to remain in clusters. By ascertaining the average size of these nanoclay clusters from the images mentioned, a planar finite element model is created in which nanoclay groups and polymer matrix are modeled as separate entities assuming a given homogeneous distribution of the nanoclay clusters. Using a Monte Carlo simulation procedure, the distribution of nanoclay is varied randomly in an automated manner in a commercial FEA code, and virtual tensile tests are performed for computing the linear stiffness for each case. Values of computed stiffness modulus of highest frequency for nanocomposites with different nanoclay contents correspond well with the experimentally obtained measures of stiffness establishing the effectiveness of the present approach for further applications.