965 resultados para FAMILY GENE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cancer/testis (CT) genes are normally expressed in germ cells only, yet are reactivated and expressed in some tumors. Of the approximately 40 CT genes or gene families identified to date, 20 are on the X chromosome and are present as multigene families, many with highly conserved members. This indicates that novel CT gene families may be identified by detecting duplicated expressed genes on chromosome X. By searching for transcript clusters that map to multiple locations on the chromosome, followed by in silico analysis of their gene expression profiles, we identified five novel gene families with testis-specific expression and >98% sequence identity among family members. The expression of these genes in normal tissues and various tumor cell lines and specimens was evaluated by qualitative and quantitative RT-PCR, and a novel CT gene family with at least 13 copies was identified on Xq24, designated as CT47. mRNA expression of CT47 was found mainly in the testes, with weak expression in the placenta. Brain tissue was the only positive somatic tissue tested, with an estimated CT47 transcript level 0.09% of that found in testis. Among the tumor specimens tested, CT47 expression was found in approximately 15% of lung cancer and esophageal cancer specimens, but not in colorectal cancer or breast cancer. The putative CT47 protein consists of 288 amino acid residues, with a C-terminus rich in alanine and glutamic acid. The only species other than human in which a gene homologous to CT47 has been detected is the chimpanzee, with the predicted protein showing approximately 80% identity in its carboxy terminal region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: To characterize the clinical, psychophysical, and electrophysiological phenotypes in a five-generation Swiss family with dominantly inherited retinitis pigmentosa caused by a T494M mutation in the Precursor mRNA-Processing factor 3 (PRPF3) gene, and to relate the phenotype to the underlying genetic mutation. METHODS: Eleven affected patients were ascertained for phenotypic and genotypic characterization. Ophthalmologic evaluations included color vision testing, Goldmann perimetry, and digital fundus photography. Some patients had autofluorescence imaging, Optical Coherence Tomography, and ISCEV-standard full-field electroretinography. All affected patients had genetic testing. RESULTS: The age of onset of night blindness and the severity of the progression of the disease varied between members of the family. Some patients reported early onset of night blindness at age three, with subsequent severe deterioration of visual acuity, which was 0.4 in the best eye after their fifties. The second group of patients had a later onset of night blindness, in the mid-twenties, with a milder disease progression and a visual acuity of 0.8 at age 70. Fundus autofluorescence imaging and electrophysiological and visual field abnormalities also showed some degree of varying phenotypes. The autofluorescence imaging showed a large high-density ring bilaterally. Myopia (range: -0.75 to -8) was found in 10/11 affected subjects. Fundus findings showed areas of atrophy along the arcades. A T494M change was found in exon 11 of the PRPF3 gene. The change segregates with the disease in the family. CONCLUSIONS: A mutation in the PRPF3 gene is rare compared to other genes causing autosomal dominant retinitis pigmentosa (ADRP). Although a T494M change has been reported, the family in our study is the first with variable expressivity. Mutations in the PRPF3 gene can cause a variable ADRP phenotype, unlike in the previously described Danish, English, and Japanese families. Our report, based on one of the largest affected pedigree, provides a better understanding as to the phenotype/genotype description of ADRP caused by a PRPF3 mutation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Summary Inorganic phosphate (Pi) is a main limiting nutrient to the growth and production yield of plants in many agro-ecosystems. Plants have evolved a series of metabolic and developmental adaptations to cope with low Pi availability. PH01 has been identified as a protein involved in the loading of Pi into the xylem of roots in Arabidopsis. In this study, the PHO1 gene family in both higher plant Arabidopsis and lower plant Physcomitrella was characterized. Additional ten PHO1 homologues in Arabidopsis and three homologues in Physcomitrella were identified. All proteins harbor a SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the highly conserved C-terminal hydrophobic portion. RT-PCR analysis of the Arabidopsis PHO1 genes revealed a broad pattern of expression in leaves, roots, stems, and flowers for most genes, although two genes are expressed exclusively in flowers, indicating their potential roles not only in Pi transport but also in Pi homeostasis within the Arabidopsis plant. The regulation of gene expression by different nutrient-starvations showed that some genes are strongly up-regulated by elements other than Pi, e.g. by NO3, Mg, and Zn starvation. Northern blot and RT-PCR analysis showed distinct expression patterns of the three Physcomitrella PHO1 genes. The investigation of Pi starvation effects on some Pi-deprivation responsive genes demonstrates that Physcomitrella has evolved a similar mechanism as higher plants to respond to Pi deficiency. Promoter activity analysis for the Physcomitrella PHO1 family genes using promoter-GUS fusions revealed their expression in protonemata and gametophores but at different levels and with different patterns, suggesting these genes may play distinct roles in Pi transport and/or Pi homeostasis in the moss plant. Single knockout mutants of the three genes were generated by gene targeting and one of them displayed a reduced Pi content in the protonemata under Pi starvation. The evolution of the PHO1 family in land plants was also discussed. Together, these findings indicate that the PHO1 family genes, present in a broad range of plant species from lower plants to flowering plants, play important roles in Pi transport and homeostasis. Résumé Le phosphate inorganique (Pi) est un nutriment essentiel à la croissance des plantes et au rendement de la production végétale. Dans beaucoup d'agro-écosystèmes, ce nutriment est limitant. Les plantes ont développé des adaptations métaboliques et développementales pour palier à la faible disponibilité du Pi. Il a été démontré que la protéine PHOI est indispensable au transfert du Pi dans le xylème des racines d' Arabidopsis. Cette étude porte sur la famille de gènes définie par PHO1 ; ceci, dans deux organismes modèles : la plante Arabidopsis pour les végétaux supérieurs, et la mousse Physcomitrella pour les végétaux inférieurs. Dix homologues à PHOI dans Arabidopsis et trois homologues dans Physcomitrella ont été identifiés. Toutes les protéines encodées présentent un domaine tripartite SPX dans leur partie N terminale hydrophile et un domaine EXS dans la partie C terminale hydrophobe hautement conservée d'entre eux. L'analyse par RT-PCR de l'expression des gènes PHO1 dans Arabidopsis révèle une expression ectopique pour la plupart, à l'exception de deux gènes dont l'expression est uniquement florale ; ceci suggère l'implication de cette famille non seulement dans le transport mais aussi dans l'homéostasie du Pi dans Arabidopsis. L'observation de l'expression de ces gènes en fonction de l'absence de différents nutriments montre que certains gènes sont fortement régulés lors de carences en NO3, Mg et Zn. L'analyse par northern blot et RT-PCR met en évidence des profils d'expression distincts pour les trois gènes de Physcomitrella. Les effets de la carence en Pi sur Physcomitrella ont été étudiés par le biais de gènes dépendants connus pour Arabidopsis, les résultats suggèrent un mode de réponse à cette carence conservé entre les végétaux inférieurs et supérieurs. La localisation tissulaire de l'expression de la famille PHO1 dans la mousse a été étudiée au moyen du gène rapporteur GUS fusionné aux différents promoteurs. Ceci a révélé leur expression dans les protonemata et les gametophores, mais à des intensités et avec des profils différents, ce qui suggère des implications distinctes dans le transport et/ou l'homéostasie du Pi dans la mousse. Des simples mutants knockout ont été générés pour chaque gène de mousse ; l'un d'eux présente une diminution du contenu protonemal en Pi lorsque soumis à une carence en Pi. L'évolution de la famille PHO1 dans les plantes terrestres est également discutée. Ensemble, ces résultats indiquent que les gènes de la famille PHO1 sont présents dans une large gamme de plantes allant des végétaux inférieurs aux supérieurs, et cette étude démontre que leur conservation se justifie potentiellement par le fait qu'ils sont probablement impliqués dans des mécanismes conservés de transport et d'homéostasie du Pi.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PHO1 was previously identified in Arabidopsis (Arabidopsis thaliana) as a protein involved in loading inorganic phosphate (Pi) into the xylem of roots and its expression was associated with the vascular cylinder. Seven genes homologous to AtPHO1 (PpPHO1;1-PpPHO1;7) have been identified in the moss Physcomitrella patens. The corresponding proteins harbor an SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the conserved C-terminal hydrophobic portion, both common features of the plant PHO1 family. Northern-blot analysis showed distinct expression patterns for the PpPHO1 genes, both at the tissue level and in response to phosphate deficiency. Transgenic P. patens expressing the beta-glucuronidase reporter gene under three different PpPHO1 promoters revealed distinct expression profiles in various tissues. Expression of PpPHO1;1 and PpPHO1;7 was specifically induced by Pi starvation. P. patens homologs to the Arabidopsis PHT1, DGD2, SQD1, and APS1 genes also responded to Pi deficiency by increased mRNA levels. Morphological changes associated with Pi deficiency included elongation of caulonemata with inhibition of the formation of side branches, resulting in colonies with greater diameter, but reduced mass compared to Pi-sufficient plants. Under Pi-deficient conditions, P. patens also increased the synthesis of ribonucleases and of an acid phosphatase, and increased the ratio of sulfolipids over phospholipids. These results indicate that P. patens and higher plants share some common strategies to adapt to Pi deficiency, although morphological changes are distinct, and that the PHO1 proteins are well conserved in bryophyte despite the lack of a developed vascular system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vitellogenin is synthesized under estrogen control in the liver, extensively modified, transported to the ovary, and there processed to the yolk proteins lipovitellin and phosvitin. In the frog Xenopus laevis there are at least four distinct but related vitellogenin genes. The two genes A1 and A2 have a 95 percent sequence homology in their messenger RNA coding regions, and contain 33 introns that interrupt the coding region (exons) at homologous positions. Sequences and lengths of analogous introns differ, and many introns contain repetitive DNA elements. The introns in these two genes that have apparently arisen by duplication have diverged extensively by events that include deletions, insertions, and probably duplications. Rapid evolutionary change involving rearrangements and the presence of repeated DNA suggests that the bulk of the sequences within introns may not have any specific function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sequence data from regions of five vertebrate vitellogenin genes were used to examine the frequency, distribution, and mutability of the dinucleotide CpG, the preferred modification site for eukaryotic DNA methyltransferases. The observed level of the CpG dinucleotide in all five genes was markedly lower than that expected from the known mononucleotide frequencies. CpG suppression was greater in introns than in exons. CpG-containing codons were found to be avoided in the vitellogenin genes, but not completely despite the redundancy of the genetic code. Frequency and distribution patterns of this dinucleotide varied dramatically among these otherwise closely related genes. Dense clusters of CpG dinucleotides tended to appear in regions of either functional or structural interest (e.g., in the transposon-like Vi-element of Xenopus) and these clusters contained 5-methylcytosine (5 mC). 5 mC is known to undergo deamination to form thymidine, but the extent to which this transition occurs in the heavily methylated genomes of vertebrates and its contribution to CpG suppression are still unclear. Sequence comparison of the methylated vitellogenin gene regions identified C----T and G----A substitutions that were found to occur at relatively high frequencies. The predicted products of CpG deamination, TpG and CpA, were elevated. These findings are consistent with the view that CpG distribution and methylation are interdependent and that deamination of 5 mC plays an important role in promoting evolutionary change at the nucleotide sequence level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The RPS4 gene codifies for ribosomal protein S4, a very well-conserved protein present in all kingdoms. In primates, RPS4 is codified by two functional genes located on both sex chromosomes: the RPS4X and RPS4Y genes. In humans, RPS4Y is duplicated and the Y chromosome therefore carries a third functional paralog: RPS4Y2, which presents a testis-specific expression pattern. Results: DNA sequence analysis of the intronic and cDNA regions of RPS4Y genes from species covering the entire primate phylogeny showed that the duplication event leading to the second Y-linked copy occurred after the divergence of New World monkeys, about 35 million years ago. Maximum likelihood analyses of the synonymous and non-synonymous substitutions revealed that positive selection was acting on RPS4Y2 gene in the human lineage, which represents the first evidence of positive selection on a ribosomal protein gene. Putative positive amino acid replacements affected the three domains of the protein: one of these changes is located in the KOW protein domain and affects the unique invariable position of this motif, and might thus have a dramatic effect on the protein function.Conclusion: Here, we shed new light on the evolutionary history of RPS4Y gene family, especially on that of RPS4Y2. The results point that the RPS4Y1 gene might be maintained to compensate gene dosage between sexes, while RPS4Y2 might have acquired a new function, at least in the lineage leading to humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: Breastfeeding effects on cognition are attributed to long-chain polyunsaturated fatty acids (LC-PUFAs), but controversy persists. Genetic variation in fatty acid desaturase (FADS) and elongase (ELOVL) enzymes has been overlooked when studying the effects of LC-PUFAs supply on cognition. We aimed to: 1) to determine whether maternal genetic variants in the FADS cluster and ELOVL genes contribute to differences in LC-PUFA levels in colostrum; 2) to analyze whether these maternal variants are related to child cognition; and 3) to assess whether children's variants modify breastfeeding effects on cognition. Methods: Data come from two population-based birth cohorts (n = 400 mother-child pairs from INMA-Sabadell; and n = 340 children from INMA-Menorca). LC-PUFAs were measured in 270 colostrum samples from INMA-Sabadell. Tag SNPs were genotyped both in mothers and children (13 in the FADS cluster, 6 in ELOVL2, and 7 in ELOVL5). Child cognition was assessed at 14 mo and 4 y using the Bayley Scales of Infant Development and the McCarthy Scales of Children"s Abilities, respectively. Results: Children of mothers carrying genetic variants associated with lower FADS1 activity (regulating AA and EPA synthesis), higher FADS2 activity (regulating DHA synthesis), and with higher EPA/AA and DHA/AA ratios in colostrum showed a significant advantage in cognition at 14 mo (3.5 to 5.3 points). Not being breastfed conferred an 8- to 9-point disadvantage in cognition among children GG homozygote for rs174468 (low FADS1 activity) but not among those with the A allele. Moreover, not being breastfed resulted in a disadvantage in cognition (5 to 8 points) among children CC homozygote for rs2397142 (low ELOVL5 activity), but not among those carrying the G allele. Conclusion: Genetically determined maternal supplies of LC-PUFAs during pregnancy and lactation appear to be crucial for child cognition. Breastfeeding effects on cognition are modified by child genetic variation in fatty acid desaturase and elongase enzymes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The PHO1 family comprises 11 members in Arabidopsis thaliana. In order to decipher the role of these genes in inorganic phosphate (Pi) transport and homeostasis, complementation of the pho1 mutant, deficient in loading Pi to the root xylem, was determined by the expression of the PHO1 homologous genes under the control of the PHO1 promoter. Only PHO1 and the homologue PHO1;H1 could complement pho1. The PHO1;H1 promoter was active in the vascular cylinder of roots and shoots. Expression of PHO1;H1 was very low in Pi-sufficient plants, but was strongly induced under Pi-deficient conditions. T-DNA knock-out mutants of PHO1;H1 neither showed growth defects nor alteration in Pi transport dynamics, or Pi content, compared with wild type. However, the double mutant pho1/pho1;h1 showed a strong reduction in growth and in the capacity to transfer Pi from the root to the shoot compared with pho1. Grafting experiments revealed that phenotypes associated with the pho1 and pho1/pho1;h1 mutants were linked to the lack of gene expression in the root. The increased expression of PHO1;H1 under Pi deficiency was largely controlled by the transcription factor PHR1 and was suppressed by the phosphate analogue phosphite, whereas the increase of PHO1 expression was independent of PHR1 and was not influenced by phosphite. Together, these data reveal that although transfer of Pi to the root xylem vessel is primarily mediated by PHO1, the homologue PHO1;H1 also contributes to Pi loading to the xylem, and that the two corresponding genes are regulated by Pi deficiency by distinct signal transduction pathways.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The amiloride-sensitive epithelial sodium channel is the limiting step in salt absorption. In mice, this channel is composed of three subunits (alpha, beta, and gamma), which are encoded by different genes (Scnn1a, Scnn1b, and Scnn1c, respectively). The functions of these genes were recently investigated in transgenic (knockout) experiments, and the absence of any subunit led to perinatal lethality. More defined phenotypes have been obtained by introducing specific mutations or using transgenic rescue experiments. In this report, these approaches are summarized and a current gene-targeting strategy to obtain conditional inactivation of the channel is illustrated. This latter approach will be indispensable for the investigation of channel function in a wide variety of organ systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The P-type II ATPase gene family encodes proteins with an important role in adaptation of the cell to variation in external K+, Ca2+ and Na2+ concentrations. The presence of P-type II gene subfamilies that are specific for certain kingdoms has been reported but was sometimes contradicted by discovery of previously unknown homologous sequences in newly sequenced genomes. Members of this gene family have been sampled in all of the fungal phyla except the arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), which are known to play a key-role in terrestrial ecosystems and to be genetically highly variable within populations. Here we used highly degenerate primers on AMF genomic DNA to increase the sampling of fungal P-Type II ATPases and to test previous predictions about their evolution. In parallel, homologous sequences of the P-type II ATPases have been used to determine the nature and amount of polymorphism that is present at these loci among isolates of Glomus intraradices harvested from the same field. RESULTS: In this study, four P-type II ATPase sub-families have been isolated from three AMF species. We show that, contrary to previous predictions, P-type IIC ATPases are present in all basal fungal taxa. Additionally, P-Type IIE ATPases should no longer be considered as exclusive to the Ascomycota and the Basidiomycota, since we also demonstrate their presence in the Zygomycota. Finally, a comparison of homologous sequences encoding P-type IID ATPases showed unexpectedly that indel mutations among coding regions, as well as specific gene duplications occur among AMF individuals within the same field. CONCLUSION: On the basis of these results we suggest that the diversification of P-Type IIC and E ATPases followed the diversification of the extant fungal phyla with independent events of gene gains and losses. Consistent with recent findings on the human genome, but at a much smaller geographic scale, we provided evidence that structural genomic changes, such as exonic indel mutations and gene duplications are less rare than previously thought and that these also occur within fungal populations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mouse NK cells express MHC class I-specific inhibitory Ly49 receptors. Since these receptors display distinct ligand specificities and are clonally distributed, their expression generates a diverse NK cell receptor repertoire specific for MHC class I molecules. We have previously found that the Dd (or Dk)-specific Ly49A receptor is usually expressed from a single allele. However, a small fraction of short-term NK cell clones expressed both Ly49A alleles, suggesting that the two Ly49A alleles are independently and randomly expressed. Here we show that the genes for two additional Ly49 receptors (Ly49C and Ly49G2) are also expressed in a (predominantly) mono-allelic fashion. Since single NK cells can co-express multiple Ly49 receptors, we also investigated whether mono-allelic expression from within the tightly linked Ly49 gene cluster is coordinate or independent. Our clonal analysis suggests that the expression of alleles of distinct Ly49 genes is not coordinate. Thus Ly49 alleles are apparently independently and randomly chosen for stable expression, a process that directly restricts the number of Ly49 receptors expressed per single NK cell. We propose that the Ly49 receptor repertoire specific for MHC class I is generated by an allele-specific, stochastic gene expression process that acts on the entire Ly49 gene cluster.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For tissue engineering, several cell types and tissues have been proposed as starting material. Allogenic skin products available for therapeutic usage are mostly developed with cell culture and with foreskin tissue of young individuals. Fetal skin cells offer a valuable solution for effective and safe tissue engineering for wounds due to their rapid growth and simple cell culture. By selecting families of genes that have been reported to be implicated in wound repair and particularly for scarless fetal wound healing including transforming growth factor-beta (TGF-beta) superfamily, extracellular matrix, and nerve/angiogenesis growth factors, we have analyzed differences in their expression between fetal skin and foreskin cells, and the same passages. Of the five TGF-beta superfamily genes analyzed by real-time reverse transcription-polymerase chain reaction, three were found to be significantly different with sixfold up-regulated for TGF-beta2, and 3.8-fold for BMP-6 in fetal cells, whereas GDF-10 was 11.8-fold down-regulated. For nerve growth factors, midkine was 36-fold down-regulated in fetal cells, and pleiotrophin was 4.76-fold up-regulated. We propose that fetal cells present technical and therapeutic advantages compared to foreskin cells for effective cell-based therapy for wound management, and overall differences in gene expression could contribute to the degree of efficiency seen in clinical use with these cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study demonstrates that the expression of the phenol UDP-glucuronosyltransferase 1 gene (UGT1A1) is regulated at the transcriptional level by thyroid hormone in rat liver. Following 3,5, 3'-triiodo-L-thyronine (T3) stimulation in vivo, there is a gradual increase in the amount of UGT1A1 mRNA with maximum levels reached 24 h after treatment. In comparison, induction with the specific inducer, 3-methylcholanthrene (3-MC), results in maximal levels of UGT1A1 mRNA after 8 h of treatment. In primary hepatocyte cultures, the stimulatory effect of both T3 and 3-MC is also observed. This induction is suppressed by the RNA synthesis inhibitor actinomycin D, indicating that neither inducer acts at the level of mRNA stabilization. Indeed, nuclear run-on assays show a 3-fold increase in UGT1A1 transcription after T3 treatment and a 6-fold increase after 3-MC stimulation. This transcriptional induction by T3 is prevented by cycloheximide in primary hepatocyte cultures, while 3-MC stimulation is only partially affected after prolonged treatment with the protein synthesis inhibitor. Together, these data provide evidence for a transcriptional control of UGT1A1 synthesis and indicate that T3 and 3-MC use different activation mechanisms. Stimulation of the UGT1A1 gene by T3 requires de novo protein synthesis, while 3-MC-dependent activation is the result of a direct action of the compound, most likely via the aromatic hydrocarbon receptor complex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The majority of cloned resistance (R) genes characterized so far contain a nucleotide-binding site (NBS) and a leucine-rich repeat (LRR) domain, where highly conserved motifs are found. Resistance genes analogs (RGAs) are genetic markers obtained by a PCR-based strategy using degenerated oligonucleotide primers drawn from these highly conserved "motifs". This strategy has the advantage of the high degree of structural and amino acid sequence conservation that is observed in R genes. The objective of the present study was to search for RGAs in Carica papaya L. and Vasconcellea cauliflora Jacq. A. DC. Out of three combinations of primers tested, only one resulted in amplification. The amplified product was cloned in pCR2.1TOPO and than sequenced using M13 forward and reverse primers. Forty-eight clones were sequenced from each species. The 96 sequences generated for each species were cleaned of vector sequences and clustered using CAP3 assembler. From the GENEBANK, one RGA was identified in C. papaya showing a BlastX e-value of 2x10-61 to the gb|AAP45165.1| putative disease resistant protein RGA3 (Solanum bulbocastanum). To the extent of our knowledge this is the first report of a RGA in the Caricaceae Dumort family. Preliminary structural studies were performed to further characterize this putative NBS-LRR type protein. Efforts to search for other RGAs in papaya should continue, mostly to provide basis for the development of transgenic papaya with resistance to diseases.