928 resultados para Eye--Anatomy
Resumo:
The depth of focus (DOF) can be defined as the variation in image distance of a lens or an optical system which can be tolerated without incurring an objectionable lack of sharpness of focus. The DOF of the human eye serves a mechanism of blur tolerance. As long as the target image remains within the depth of focus in the image space, the eye will still perceive the image as being clear. A large DOF is especially important for presbyopic patients with partial or complete loss of accommodation (presbyopia), since this helps them to obtain an acceptable retinal image when viewing a target moving through a range of near to intermediate distances. The aim of this research was to investigate the DOF of the human eye and its association with the natural wavefront aberrations, and how higher order aberrations (HOAs) can be used to expand the DOF, in particular by inducing spherical aberrations ( 0 4 Z and 0 6 Z ). The depth of focus of the human eye can be measured using a variety of subjective and objective methods. Subjective measurements based on a Badal optical system have been widely adopted, through which the retinal image size can be kept constant. In such measurements, the subject.s tested eye is normally cyclopleged. Objective methods without the need of cycloplegia are also used, where the eye.s accommodative response is continuously monitored. Generally, the DOF measured by subjective methods are slightly larger than those measured objectively. In recent years, methods have also been developed to estimate DOF from retinal image quality metrics (IQMs) derived from the ocular wavefront aberrations. In such methods, the DOF is defined as the range of defocus error that degrades the retinal image quality calculated from the IQMs to a certain level of the possible maximum value. In this study, the effect of different amounts of HOAs on the DOF was theoretically evaluated by modelling and comparing the DOF of subjects from four different clinical groups, including young emmetropes (20 subjects), young myopes (19 subjects), presbyopes (32 subjects) and keratoconics (35 subjects). A novel IQM-based through-focus algorithm was developed to theoretically predict the DOF of subjects with their natural HOAs. Additional primary spherical aberration ( 0 4 Z ) was also induced in the wavefronts of myopes and presbyopes to simulate the effect of myopic refractive correction (e.g. LASIK) and presbyopic correction (e.g. progressive power IOL) on the subject.s DOF. Larger amounts of HOAs were found to lead to greater values of predicted DOF. The introduction of primary spherical aberration was found to provide moderate increase of DOF while slightly deteriorating the image quality at the same time. The predicted DOF was also affected by the IQMs and the threshold level adopted. We then investigated the influence of the chosen threshold level of the IQMs on the predicted DOF, and how it relates to the subjectively measured DOF. The subjective DOF was measured in a group of 17 normal subjects, and we used through-focus visual Strehl ratio based on optical transfer function (VSOTF) derived from their wavefront aberrations as the IQM to estimate the DOF. The results allowed comparison of the subjective DOF with the estimated DOF and determination of a threshold level for DOF estimation. Significant correlation was found between the subject.s estimated threshold level for the estimated DOF and HOA RMS (Pearson.s r=0.88, p<0.001). The linear correlation can be used to estimate the threshold level for each individual subject, subsequently leading to a method for estimating individual.s DOF from a single measurement of their wavefront aberrations. A subsequent study was conducted to investigate the DOF of keratoconic subjects. Significant increases of the level of HOAs, including spherical aberration, coma and trefoil, can be observed in keratoconic eyes. This population of subjects provides an opportunity to study the influence of these HOAs on DOF. It was also expected that the asymmetric aberrations (coma and trefoil) in the keratoconic eye could interact with defocus to cause regional blur of the target. A dual-Badal-channel optical system with a star-pattern target was used to measure the subjective DOF in 10 keratoconic eyes and compared to those from a group of 10 normal subjects. The DOF measured in keratoconic eyes was significantly larger than that in normal eyes. However there was not a strong correlation between the large amount of HOA RMS and DOF in keratoconic eyes. Among all HOA terms, spherical aberration was found to be the only HOA that helped to significantly increase the DOF in the studied keratoconic subjects. Through the first three studies, a comprehensive understanding of DOF and its association to the HOAs in the human eye had been achieved. An adaptive optics system was then designed and constructed. The system was capable of measuring and altering the wavefront aberrations in the subject.s eye and measuring the resulting DOF under the influence of different combination of HOAs. Using the AO system, we investigated the concept of extending the DOF through optimized combinations of 0 4 Z and 0 6 Z . Systematic introduction of a targeted amount of both 0 4 Z and 0 6 Z was found to significantly improve the DOF of healthy subjects. The use of wavefront combinations of 0 4 Z and 0 6 Z with opposite signs can further expand the DOF, rather than using 0 4 Z or 0 6 Z alone. The optimal wavefront combinations to expand the DOF were estimated using the ratio of increase in DOF and loss of retinal image quality defined by VSOTF. In the experiment, the optimal combinations of 0 4 Z and 0 6 Z were found to provide a better balance of DOF expansion and relatively smaller decreases in VA. Therefore, the optimal combinations of 0 4 Z and 0 6 Z provides a more efficient method to expand the DOF rather than 0 4 Z or 0 6 Z alone. This PhD research has shown that there is a positive correlation between the DOF and the eye.s wavefront aberrations. More aberrated eyes generally have a larger DOF. The association of DOF and the natural HOAs in normal subjects can be quantified, which allows the estimation of DOF directly from the ocular wavefront aberration. Among the Zernike HOA terms, spherical aberrations ( 0 4 Z and 0 6 Z ) were found to improve the DOF. Certain combinations of 0 4 Z and 0 6 Z provide a more effective method to expand DOF than using 0 4 Z or 0 6 Z alone, and this could be useful in the optimal design of presbyopic optical corrections such as multifocal contact lenses, intraocular lenses and laser corneal surgeries.
Resumo:
It is a common acceptance that contemporary schoolchildren live in a world that is intensely visual and commercially motivated, where what is imagined and what is experienced intermingle. Because of this, contemporary education should encourage a child to make reference to, and connection with their ‘out-of-school’ life. The core critical underpinnings of curriculum based arts appreciation and theory hinge on educators and students taking a historical look at the ways artists have engaged with, and made comment upon, their contemporary societies. My article uses this premise to argue for the need to persist with pushing for critique of/through the visual, that it be delivered as an active process via the arts classroom rather than as visual literacy, here regarded as a more passive process for interpreting and understanding visual material. The article asserts that visual arts lessons are best placed to provide fully students with such critique because they help students to develop a ’critical eye’, an interpretive lens often used by artists to view, analyse and independently navigate and respond to contemporary society.
Resumo:
Dry eye syndrome is one of the most commonly reported eye health conditions. Dynamic-area highspeed videokeratoscopy (DA-HSV) represents a promising alternative to the most invasive clinical methods for the assessment of the tear film surface quality (TFSQ), particularly as Placido-disk videokeratoscopy is both relatively inexpensive and widely used for corneal topography assessment. Hence, improving this technique to diagnose dry eye is of clinical significance and the aim of this work. First, a novel ray-tracing model is proposed that simulates the formation of a Placido image. This model shows the relationship between tear film topography changes and the obtained Placido image and serves as a benchmark for the assessment of indicators of the ring’s regularity. Further, a novel block-feature TFSQ indicator is proposed for detecting dry eye from a series of DA-HSV measurements. The results of the new indicator evaluated on data from a retrospective clinical study, which contains 22 normal and 12 dry eyes, have shown a substantial improvement of the proposed technique to discriminate dry eye from normal tear film subjects. The best discrimination was obtained under suppressed blinking conditions. In conclusion,this work highlights the potential of the DA-HSV as a clinical tool to diagnose dry eye syndrome.
Resumo:
Purpose. To determine how Developmental Eye Movement (DEM) test results relate to reading eye movement patterns recorded with the Visagraph in visually normal children, and whether DEM results and recorded eye movement patterns relate to standardized reading achievement scores. Methods. Fifty-nine school-age children (age = 9.7 ± 0.6 years) completed the DEM test and had eye movements recorded with the Visagraph III test while reading for comprehension. Monocular visual acuity in each eye and random dot stereoacuity were measured and standardized scores on independently administered reading comprehension tests [reading progress test (RPT)] were obtained. Results. Children with slower DEM horizontal and vertical adjusted times tended to have slower reading rates with the Visagraph (r = -0.547 and -0.414 respectively). Although a significant correlation was also found between the DEM ratio and Visagraph reading rate (r = -0.368), the strength of the relationship was less than that between DEM horizontal adjusted time and reading rate. DEM outcome scores were not significantly associated with RPT scores. When the relative contribution of reading ability (RPT) and DEM scores was accounted for in multivariate analysis, DEM outcomes were not significantly associated with Visagraph reading rate. RPT scores were associated with Visagraph outcomes of duration of fixations (r = -0.403) and calculated reading rate (r = 0.366) but not with DEM outcomes. Conclusions.DEM outcomes can identify children whose Visagraph recorded eye movement patterns show slow reading rates. However, when reading ability is accounted for, DEM outcomes are a poor predictor of reading rate. Visagraph outcomes of duration of fixation and reading rate relate to standardized reading achievement scores; however, DEM results do not. Copyright © 2011 American Academy of Optometry.
Resumo:
Zero energy buildings (ZEB) and zero energy homes (ZEH) are a current hot topic globally for policy makers (what are the benefits and costs), designers (how do we design them), the construction industry (can we build them), marketing (will consumers buy them) and researchers (do they work and what are the implications). This paper presents initial findings from actual measured data from a 9 star (as built), off-ground detached family home constructed in south-east Queensland in 2008. The integrated systems approach to the design of the house is analysed in each of its three main goals: maximising the thermal performance of the building envelope, minimising energy demand whilst maintaining energy service levels, and implementing a multi-pronged low carbon approach to energy supply. The performance outcomes of each of these stages are evaluated against definitions of Net Zero Carbon / Net Zero Emissions (Site and Source) and Net Zero Energy (onsite generation vs primary energy imports). The paper will conclude with a summary of the multiple benefits of combining very high efficiency building envelopes with diverse energy management strategies: a robustness, resilience, affordability and autonomy not generally seen in housing.
Resumo:
Purpose. To create a binocular statistical eye model based on previously measured ocular biometric data. Methods. Thirty-nine parameters were determined for a group of 127 healthy subjects (37 male, 90 female; 96.8% Caucasian) with an average age of 39.9 ± 12.2 years and spherical equivalent refraction of −0.98 ± 1.77 D. These parameters described the biometry of both eyes and the subjects' age. Missing parameters were complemented by data from a previously published study. After confirmation of the Gaussian shape of their distributions, these parameters were used to calculate their mean and covariance matrices. These matrices were then used to calculate a multivariate Gaussian distribution. From this, an amount of random biometric data could be generated, which were then randomly selected to create a realistic population of random eyes. Results. All parameters had Gaussian distributions, with the exception of the parameters that describe total refraction (i.e., three parameters per eye). After these non-Gaussian parameters were omitted from the model, the generated data were found to be statistically indistinguishable from the original data for the remaining 33 parameters (TOST [two one-sided t tests]; P < 0.01). Parameters derived from the generated data were also significantly indistinguishable from those calculated with the original data (P > 0.05). The only exception to this was the lens refractive index, for which the generated data had a significantly larger SD. Conclusions. A statistical eye model can describe the biometric variations found in a population and is a useful addition to the classic eye models.
Resumo:
Purpose: We provide an account of the relationships between eye shape, retinal shape and peripheral refraction. Recent findings: We discuss how eye and retinal shapes may be described as conicoids, and we describe an axis and section reference system for determining shapes. Explanations are given of how patterns of retinal expansion during the development of myopia may contribute to changing patterns of peripheral refraction, and how pre-existing retinal shape might contribute to the development of myopia. Direct and indirect techniques for determining eye and retinal shape are described, and results are discussed. There is reasonable consistency in the literature of eye length increasing at a greater rate than height and width as the degree of myopia increases, so that eyes may be described as changing from oblate/spherical shapes to prolate shapes. However, one study indicates that the retina itself, while showing the same trend, remains oblate in shape for most eyes (discounting high myopia). Eye shape and retinal shape are not the same and merely describing an eye shape as being prolate or oblate is insufficient without some understanding of the parameters contributing to this; in myopia a prolate eye shape is likely to involve both a steepening retina near the posterior pole combined with a flattening (or a reduction in steepening compared with an emmetrope) away from the pole.
Resumo:
This study evaluated the effect of eye muscle area (EMA), ossification, carcass weight, marbling and rib fat depth on the incidence of dark cutting (pH u > 5.7) using routinely collected Meat Standards Australia (MSA) data. Data was obtained from 204,072 carcasses at a Western Australian processor between 2002 and 2008. Binomial data of pH u compliance was analysed using a logit model in a Bayesian framework. Increasing eye muscle area from 40 to 80 cm 2, increased pH u compliance by around 14% (P < 0.001) in carcasses less than 350 kg. As carcass weight increased from 150 kg to 220 kg, compliance increased by 13% (P < 0.001) and younger cattle with lower ossification were also 7% more compliant (P < 0.001). As rib fat depth increased from 0 to 20 mm, pH u compliance increased by around 10% (P < 0.001) yet marbling had no effect on dark cutting. Increasing musculature and growth combined with good nutrition will minimise dark cutting beef in Australia.
Resumo:
The 12 to 13 July 2003 andesite lava dome collapse at the Soufrière Hills volcano, Montserrat, provides the first opportunity to document comprehensively both the sub-aerial and submarine sequence of events for an eruption. Numerous pyroclastic flows entered the ocean during the collapse, depositing approximately 90% of the total material into the submarine environment. During peak collapse conditions, as the main flow penetrated the air–ocean interface, phreatic explosions were observed and a surge cloud decoupled from the main flow body to travel 2 to 3 km over the ocean surface before settling. The bulk of the flow was submerged and rapidly mixed with sea water forming a water-saturated mass flow. Efficient sorting and physical differentiation occurred within the flow before initial deposition at 500 m water depth. The coarsest components (∼60% of the total volume) were deposited proximally from a dense granular flow, while the finer components (∼40%) were efficiently elutriated into the overlying part of the flow, which evolved into a far-reaching turbidity current.
Resumo:
In Southwell v Jackson [2012] QDC 65, McGill DCJ examined a number of rules in Chapter 17A of the Uniform Civil Procedure Rules 1999 (Qld) dealing with costs assessment as well as relevant provisions of the Legal Profession Act 2007 (Qld). This article looks at issues of general principle raised by the decision.
Resumo:
The striking color patterns of butterflies and birds have long interested biologists. But how these animals see color is less well understood. Opsins are the protein components of the visual pigments of the eye. Color vision has evolved in butterflies through opsin gene duplications, through positive selection at individual opsin loci, and by the use of filtering pigments. By contrast, birds have retained the same opsin complement present in early-jawed vertebrates, and their visual system has diversified primarily through tuning of the short-wavelength-sensitive photoreceptors, rather than by opsin duplication or the use of filtering elements. Butterflies and birds have evolved photoreceptors that might use some of the same amino acid sites for generating similar spectral phenotypes across approximately 540 million years of evolution, when rhabdomeric and ciliary-type opsins radiated during the early Cambrian period. Considering the similarities between the two taxa, it is surprising that the eyes of birds are not more diverse. Additional taxonomic sampling of birds may help clarify this mystery.
Resumo:
The role of individual ocular tissues in mediating changes to the sclera during myopia development is unclear. The aim of this study was to examine the effects of retina, RPE and choroidal tissues from myopic and hyperopic chick eyes on the DNA and glycosaminoglycan (GAG) content in cultures of chick scleral fibroblasts. Primary cultures of fibroblastic cells expressing vimentin and -smooth muscle actin were established in serum-supplemented growth medium from 8-day-old normal chick sclera. The fibroblasts were subsequently co-cultured with posterior eye cup tissue (full thickness containing retina, RPE and choroid) obtained from untreated eyes and eyes wearing translucent diffusers (form-deprivation myopia, FDM) or -15D lenses (lens-induced myopia, LIM) for 3 days (post hatch day 5 to 8) (n=6 per treatment group). The effect of tissues (full thickness and individual retina, RPE, and choroid layers) from -15D (LIM) versus +15D (lens-induced hyperopia, LIH) treated eyes was also determined. Refraction changes in the direction predicted by the visual treatments were confirmed by retinoscopy prior to tissue collection. Glycosaminoglycan (GAG) and DNA content of the scleral fibroblast cultures were measured using GAG and PicoGreen assays. There was no significant difference in the effect of full thickness tissue from either FDM or LIM treated eyes on DNA and GAG content of scleral fibroblasts (DNA 8.9±2.6 µg and 8.4±1.1 µg, p=0.12; GAG 11.2±0.6 µg and 10.1±1.0 µg, p=0.34). Retina from LIM eyes did not alter fibroblast DNA or GAG content compared to retina from LIH eyes (DNA 27.2±1.7 µg versus 23.2±1.5 µg, p=0.21; GAG 28.1±1.7 µg versus. 28.7±1.2 µg, p=0.46). Similarly, the choroid from LIH and LIM eyes did not produce a differential effect on DNA content (DNA, LIM 46.9±6.4 versus LIH 51.5±4.7 µg, p=0.31), whereas GAG content was higher for cells in co-culture with choroid from LIH eyes (GAG 32.5±0.7 µg versus 18.9±1.2 µg, F1,6=9.210, p=0.0002). In contrast, fibroblast DNA was greater in co-culture with RPE from LIM eyes than the empty basket and DNA content less for co-culture with RPE from LIH eyes (LIM: 72.4±6.3 µg versus Empty basket: 46.03±1.0 µg; F1,6=69.99, p=0.0005 and LIH: 27.9±2.3 µg versus empty basket: 46.03±1.0 µg; p=0.0004). GAG content was higher with RPE from LIH eyes (LIH: 33.7±1.9 µg versus empty basket: 29.5±0.8 µg, F1,6=13.99, p=0.010) and lower with RPE from LIM eyes (LIM: 27.7±0.9 µg versus empty basket: 29.5±0.8 µg, p=0.021). GAG content of cells in co-culture with choroid from LIH eyes was higher compared to co-culture with choroid from LIM eyes (32.5±0.7 µg versus 18.9±1.2 µg respectively, F1,6=9.210, p=0.0002). In conclusion, these experiments provide evidence for a directional growth signal that is present (and remains) in the ex-vivo RPE, but that does not remain in the ex-vivo retina. The identity of this factor(s) that can modify scleral cell DNA and GAG content requires further research.