912 resultados para External cylindrical plunge grinding


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The perturbation method is developed to investigate the effective nonlinear dielectric response of Kerr composites when the external ac and dc electric field is applied. Under the external ac and dc electric field E-app=E-a(1+sin omegat), the effective coupling nonlinear response can be induced by the cubic nonlinearity of Kerr nonlinear materials at the zero frequency, the finite basic frequency omega, the second and the third harmonics, 2omega and 3omega, and so on. As an example, we have investigated the cylindrical inclusions randomly embedded in a host and derived the formulas of the effective nonlinear dielectric response at harmonics in dilute limit. For a higher concentration of inclusions, we have proposed a nonlinear effective-medium approximation by introducing the general effective nonlinear response. With the relationships between the effective nonlinear response at harmonics and the general effective nonlinear response, we have derived a set of formulas of the effective nonlinear dielectric responses at harmonics for a larger volume fraction. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective dielectric responses of graded cylindrical composites are investigated when an external uniform field is applied to the composites. Considering linear random composites of cylindrical particles with a specific dielectric function, which varies along the radial direction of the particles, we have studied three cases of dielectric profiles: exponential function, linear and power-law profiles. For each case, the effective dielectric response of graded composites is given on the basis of exact solutions of the local potentials of composites in the dilute limit. For a larger volume fraction, we have proposed an effective medium approximation to estimate the effective dielectric response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general effective response is proposed for nonlinear composite media, which obey a current field relation of the form J = sigmaE + chi\E\(2) E when an external alternating current (AC) electrical field is applied. For a sinusoidal applied field with finite frequency omega, the effective constitutive relation between the current density and electric field can be defined as, = sigma(e) + chi(e) <\E(x, omega, t)\(2) E(x, omega, t)> + (. . .), where sigma(e) and chi(e) are the general effective linear and nonlinear conductive responses, respectively. The angled brackets <(. . .)> denotes the ensemble average. As two examples, we have investigated the cylindrical and spherical inclusions embedded in a host and also derived the formulae of the general effective linear and nonlinear conductive responses in dilute limit. For higher volume fraction of inclusions, we have proposed a nonlinear effective medium approximation (EMA) method to estimate the general effective response of nonlinear composites in external AC field. Furthermore, the effective nonlinear responses at harmonics are predicted by using the general effective response. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effective property has been investigated theoretically in graded elliptical cylindrical composite's consisting of inhomogeneous graded elliptical cylinders and an isotropic matrix under external uniform electric field. As a theoretical model, the dielectric gradient profile in the elliptical cylinder is modeled by a power-law function of short semi-axis variable parameter (xi(2) - 1) in the elliptical cylindrical coordinates, namely epsilon(i)(xi) = c(k) (xi(2) - 1)(k), where c(k) and k are the parameters, and xi is the long semi-axis space variable in an elliptical cylindrical inclusion region. In the dilute limit, the local analytical potentials in inclusion and matrix regions are derived exactly by means of the hyper-geometric function, and the formulas are given for estimating the effective dielectric responses under the external lfield along (x) over cap- and (y) over cap -directions, respectively. Furthermore, we have demonstrated that our effective response formulas can be reduced to the well-known results of homogeneous isotropic elliptical cylindrical composites if we take the limit k -> 0 in graded elliptical cylindrical composites. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under an external alternating current (ac) field, the effective ac dielectric response of graded composites consisting of the graded cylindrical inclusion having complex permittivity profiles has been investigated theoretically. A model that the dielectric function is assumed to be a constant while the conductivity has a power-law dependence on the radial variable r, namely epsilon(i)(r) = A + cr(k)/i omega. is studied and the local analytical potentials of the inclusion and the host regions are derived in terms of hyper-geometric function. In the dilute limit, the effective ac dielectric response is predicted. Meanwhile, we have given the exact proof of the differential effective dipole approximation (DEDA) method, which is suitable to arbitrary graded profiles. Furthermore, we have given the analytical potentials and the effective ac dielectric responses of coated graded cylindrical composites for two cases, case (a) graded core and case (b) graded coated layer, having the graded dielectric profiles, respectively. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Submarine hull structure is a watertight envelope, under hydrostatic pressure when in operation. Stiffened cylindrical shells constitute the major portion of these submarine hulls and these thin shells under compression are susceptible to buckling failure. Normally loss of stability occurs at the limit point rather than at the bifurcation point and the stability analysis has to consider the change in geometry at each load step. Hence geometric nonlinear analysis of the shell forms becomes. a necessity. External hydrostatic pressure will follow the deformed configuration of the shell and hence follower force effect has to be accounted for. Computer codes have been developed based on all-cubic axisymmetric cylindrical shell finite element and discrete ring stiffener element for linear elastic, linear buckling and geometric nonIinear analysis of stiffened cylindrical shells. These analysis programs have the capability to treat hydrostatic pressure as a radial load and as a follower force. Analytical investigations are carried out on two attack submarine cylindrical hull models besides standard benchmark problems. In each case, the analysis has been carried out for interstiffener, interdeepframe and interbulkhead configurations. The shell stiffener attachment in each of this configuration has been represented by the simply supported-simply supported, clamped-clamped and fixed-fixed boundary conditions in this study. The results of the analytical investigations have been discussed and the observations and conclusions are described. Rotation restraint at the ends is influential for interstiffener and interbulkhead configurations and the significance of axial restraint becomes predominant in the interbulkhead configuration. The follower force effect of hydrostatic pressure is not significant in interstiffener and interdeepframe configurations where as it has very high detrimental effect on buckling pressure on interbulkhead configuration. The geometric nonlinear interbulkhead analysis incorporating follower force effect gives the critical value of buckling pressure and this analysis is recommended for the determination of collapse pressure of stiffened cylindrical submarine shells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the ability of an applied electric field to convert the morphology of a diblock-copolymer thin film from a monolayer of spherical domains embedded in the matrix to cylindrical domains that penetrate through the matrix. As expected, the applied field increases the relative stability of cylindrical domains, while simultaneously reducing the energy barrier that impedes the transition to cylinders. The effectiveness of the field is enhanced by a large dielectric contrast between the two block-copolymer components, particularly when the low-dielectric contrast component forms the matrix. Furthermore, the energy barrier is minimized by selecting sphere-forming diblock copolymers that are as compositionally symmetric as possible. Our calculations, which are the most quantitatively reliable to date, are performed using a numerically precise spectral algorithm based on self-consistent-field theory supplemented with an exact treatment for linear dielectric materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heat conduction problem, in the presence of a change of state, was solved for the case of an indefinitely long cylindrical layer cavity. As boundary conditions, it is imposed that the internal surface of the cavity is maintained below the fusion temperature of the infilling substance and the external surface is kept above it. The solution, obtained in nondimensional variables, consists in two closed form heat conduction equation solutions for the solidified and liquid regions, which formally depend of the, at first, unknown position of the phase change front. The energy balance through the phase change front furnishes the equation for time dependence of the front position, which is numerically solved. Substitution of the front position for a particular instant in the heat conduction equation solutions gives the temperature distribution inside the cavity at that moment. The solution is illustrated with numerical examples. [DOI: 10.1115/1.4003542]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The world tendency is the increase of the productivity and the production of pieces more and more sophisticated, with high degree of geometric and dimensional tolerances, with good surface finish and low cost. Rectification is responsible for the final finish in the machining process of a material. However, damages generated in this production phase affect all the resources used in the previous processes. Great part of the problems happennig in the rectification process is due to the enormous temperature generated in this activity because of the machining conditions. The dive speed, which is directly related to the productivity, is considered responsible for the damages that occur during rectification, limiting its values to those that do not cause such damages. In this work, through the variation of the dive speed in the process of cylindrical grinding of type ABNT D6 steel, rationalizing the application of two cutting fluids and using a CBN (cubic boron nitrate) abrasive wheel with vitrified blond, the influence of the dive speed on the surface damages of hardened steels was evaluated. The results allowed to say that the dive speed, associated to an efficient cooling and lubrication, didn't provoke thermal damages (including heated zones, cracks and tension stresses) to the material. Residual stresses and the roughness of rectified materials presented a correlation with the machining conditions. The work concluded that it is possible to increase the productivity without provoking damages in the rectified components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have demonstrated that the sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field. In this paper, a two-dimensional computer simulation of a magnetic-field-enhanced PHI system is described. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform molecular nitrogen plasma. A static magnetic field is created by a small coil installed inside the target holder. The vacuum chamber is filled with background nitrogen gas to form a plasma in which collisions of electrons and neutrals are simulated by the Monte Carlo algorithm. It is found that a high-density plasma is formed around the target due to the intense background gas ionization by the magnetized electrons drifting in the crossed E x B fields. The effect of the magnetic field intensity, the target bias, and the gas pressure on the sheath dynamics and implantation current of the PHI system is investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work uses a monitoring system based on a PC platform, where the acoustic emission and electric power signals generated during the grinding process are used to investigate superficial burning occurrence in a surface grinding operation using two types of steel, three grinding conditions and an Al203 vitrified grinding wheel. Acoustic emission signals on the workpiece and grinding power were measured during a surface plunge operation until the grinding burn happened. From the results the standard deviation of the acoustic emission signal and the maximum electric power were calculated for each grinding pass. The proposed DPO parameter is the product between the power level and acoustic emission standard deviation. The results show that both signals can be used for burning detection, and the parameter DPO is the best indicator for the burning studied in this work. This can be explained by the high dispersion of the acoustic emission RMS level associated to the high power consumption when the grinding wheel lose its sharpness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the evaluation of tangential and normal stresses in moderately thick functionally graded conical and cylindrical shells subjected to mechanical loadings. Several types of graded materials are investigated. The functionally graded material consists of ceramic and metallic constituents. A four parameter power law function is used. The UTSDT allows the presence of a finite transverse shear stress at the top and bottom surfaces of the graded shell. In addition, the initial curvature effect included in the formulation leads to the generalization of the present theory (GUTSDT). The Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the governing equations, the external boundary conditions and the compatibility conditions. Transverse and normal stresses are also calculated by integrating the three dimensional equations of equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point of the conical or cylindrical shell or panel can be given. The initial curvature effect and the role of the power law functions are shown for a wide range of functionally conical and cylindrical shells under various loading and boundary conditions. Finally, numerical examples of the available literature are worked out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cylpebs are slightly tapered cylindrical grinding media with a ratio of length to diameter of unity. The manufactures have made conflicting claims regarding the milling performance of Cylpebs in comparison with balls. One major point of interest is which one grinds finer at the same operating conditions. The difficulty in comparison is due to the shape difference. The two grinding media have different surface area, bulk density and contact mechanisms in grinding action. Comparative tests were conducted using the two types of grinding media in a laboratory Bond ball mill at various conditions of equality such as media mass, size distribution, surface area and input specific energy. The laboratory results indicate that at the same specific energy input level the Cylpebs produce a product with slightly less oversize due to their greater surface area, but essentially the same sizing at the fine end as that produced with the balls. The reason may be that the advantage of greater surface area is balanced by the line contact and area contact grinding actions with the Cylpebs. A new ball mill scale-up procedure [Man, Y.T., 2001. Model-based procedure for scale-up of wet, overflow ball mills, Part 1: outline of the methodology. Minerals Engineering 14 (10), 1237-1246] was employed to predict grinding performance of an industrial mill from the laboratory test results. The predicted full scale operation was compared with the plant survey data. Some problems in the original scale-up procedures were identified. The scale-up procedure was therefore modified to allow the predicted ball mill performance to match the observed one. The calibrated scale-up procedure was used to predict the Cylpebs performance in the full scale industrial mill using the laboratory tests results. (C) 2004 Elsevier Ltd. All rights reserved.