957 resultados para Exponential Sum
Resumo:
A microscopic theoretical calculation of time-dependent solvation energy shows that the solvation of an ion or a dipole is dominated by a single relaxation time if the translational contribution to relaxation is significant.
Resumo:
Let n points be placed independently in d-dimensional space according to the density f(x) = A(d)e(-lambda parallel to x parallel to alpha), lambda, alpha > 0, x is an element of R-d, d >= 2. Let d(n) be the longest edge length of the nearest-neighbor graph on these points. We show that (lambda(-1) log n)(1-1/alpha) d(n) - b(n) converges weakly to the Gumbel distribution, where b(n) similar to ((d - 1)/lambda alpha) log log n. We also prove the following strong law for the normalized nearest-neighbor distance (d) over tilde (n) = (lambda(-1) log n)(1-1/alpha) d(n)/log log n: (d - 1)/alpha lambda <= lim inf(n ->infinity) (d) over tilde (n) <= lim sup(n ->infinity) (d) over tilde (n) <= d/alpha lambda almost surely. Thus, the exponential rate of decay alpha = 1 is critical, in the sense that, for alpha > 1, d(n) -> 0, whereas, for alpha <= 1, d(n) -> infinity almost surely as n -> infinity.
Resumo:
Consider L independent and identically distributed exponential random variables (r.vs) X-1, X-2 ,..., X-L and positive scalars b(1), b(2) ,..., b(L). In this letter, we present the probability density function (pdf), cumulative distribution function and the Laplace transform of the pdf of the composite r.v Z = (Sigma(L)(j=1) X-j)(2) / (Sigma(L)(j=1) b(j)X(j)). We show that the r.v Z appears in various communication systems such as i) maximal ratio combining of signals received over multiple channels with mismatched noise variances, ii)M-ary phase-shift keying with spatial diversity and imperfect channel estimation, and iii) coded multi-carrier code-division multiple access reception affected by an unknown narrow-band interference, and the statistics of the r.v Z derived here enable us to carry out the performance analysis of such systems in closed-form.
Resumo:
NDDO-based (AM1) configuration interaction (CI) calculations have been used to calculate the wavelength and oscillator strengths of electronic absorptions in organic molecules and the results used in a sum-over-states treatment to calculate second-order-hyperpolarizabilities. The results for both spectra and hyperpolarizabilities are of acceptable quality as long as a suitable CI-expansion is used. We have found that using an active space of eight electrons in eight orbitals and including all single and pair-double excitations in the CI leads to results that agree well with experiment and that do not change significantly with increasing active space for most organic molecules. Calculated second-order hyperpolarizabilities using this type of CI within a sum-over-states calculation appear to be of useful accuracy.
Resumo:
In 1984 Jutila [5] obtained a transformation formula for certain exponential sums involving the Fourier coefficients of a holomorphic cusp form for the full modular group SL(2, Z). With the help of the transformation formula he obtained good estimates for the distance between consecutive zeros on the critical line of the Dirichlet series associated with the cusp form and for the order of the Dirichlet series on the critical line, [7]. In this paper we follow Jutila to obtain a transformation formula for exponential sums involving the Fourier coefficients of either holomorphic cusp forms or certain Maass forms for congruence subgroups of SL(2, Z) and prove similar estimates for the corresponding Dirichlet series.
Resumo:
The general equation for one-dimensional wave propagation at low flow Mach numbers (M less-than-or-equals, slant0·2) is derived and is solved analytically for conical and exponential shapes. The transfer matrices are derived and shown to be self-consistent. Comparison is also made with the relevant data available in the literature. The transmission loss behaviour of conical and exponential pipes, and mufflers involving these shapes, are studied. Analytical expressions of the same are given for the case of a stationary medium. The mufflers involving conical and exponential pipes are shown to be inferior to simple expansion chambers (of similar dimensions) at higher frequencies from the point of view of noise abatement, as was observed earlier experimentally.
Resumo:
Static disorder has recently been implicated in the non-exponential kinetics of the unfolding of single molecules of poly-ubiquitin under a constant force Kuo, Garcia-Manyes, Li, Barel, Lu, Berne, Urbakh, Klafter, and Fernandez, Proc. Natl. Acad. Sci. U. S. A. 107, 11336 (2010)]. In the present paper, it is suggested that dynamic disorder may provide a plausible, alternative description of the experimental observations. This suggestion is made on the basis of a model in which the barrier to chain unfolding is assumed to be modulated by a control parameter r that evolves in a parabolic potential under the action of fractional Gaussian noise according to a generalized Langevin equation. The treatment of dynamic disorder within this model is pursued using Zwanzig's indirect approach to noise averaging Acc. Chem. Res. 23, 148 (1990)]. In conjunction with a self-consistent closure scheme developed by Wilemski and Fixman J. Chem. Phys. 58, 4009 (1973); ibid. 60, 866 (1974)], this approach eventually leads to an expression for the chain unfolding probability that can be made to fit the corresponding experimental data very closely. (C) 2011 American Institute of Physics.
Resumo:
A detailed theoretical study of solvation dynamics in water is presented. The motivation of the present study comes from the recent experimental observation that the dynamics of solvation of an ion in water is ultrafast and the solvation time correlation function decays with a time constant of about 55 fs. The slower decay in the long time can be described by a sum of two exponentials with time constants equal to 126 and 880 fs. The molecular theory (developed earlier) predicts a time constant equal to 52 fs for the initial Gaussian decay and time constants equal to 134 and 886 fs for the two exponential components at the long time. This nearly perfect agreement is obtained by using the most detailed dynamical information available in the literature. The present study emphasizes the importance of the intermolecular vibrational band originating from the O...O stretching mode of the O�H...O units in the initial dynamics and raises several interesting questions regarding the nature of the decay of this mode. We have also studied the effects of isotope substitution on solvation dynamics. It is predicted that a significant isotope effect may be observed in the long time. The experimental results have also been compared with the prediction of the dynamic mean spherical approximation (DMSA); the agreement is not satisfactory at the long time. It is further found that the molecular theory and the DMSA lead to virtually identical results if the translational modes of the solvent molecules are neglected in the former. DMSA has also been used to investigate the dynamics of solvation of a dipolar solute in water. It is found that the dynamics of dipolar solvation exhibit features rather different from those of ion solvation. © 1995 American Institute of Physics.
Resumo:
Competition for available resources is natural amongst coexisting species, and the fittest contenders dominate over the rest in evolution. The. dynamics of this selection is studied using a simple linear model. It has similarities to features of quantum computation, in particular conservation laws leading to destructive interference. Compared to an altruistic scenario, competition introduces instability and eliminates the weaker species in a finite time.
Resumo:
We derive sum rules which constrain the spectral density corresponding to the retarded propagator of the T-xy component of the stress tensor for three gravitational duals. The shear sum rule is obtained for the gravitational dual of the N = 4 Yang-Mills, theory of the M2-branes and M5-branes all at finite chemical potential. We show that at finite chemical potential there are additional terms in the sum rule which involve the chemical potential. These modifications are shown to be due to the presence of scalars in the operator product expansion of the stress tensor which have non-trivial vacuum expectation values at finite chemical potential.
Resumo:
We study zero-sum risk-sensitive stochastic differential games on the infinite horizon with discounted and ergodic payoff criteria. Under certain assumptions, we establish the existence of values and saddle-point equilibria. We obtain our results by studying the corresponding Hamilton-Jacobi-Isaacs equations. Finally, we show that the value of the ergodic payoff criterion is a constant multiple of the maximal eigenvalue of the generators of the associated nonlinear semigroups.
Resumo:
Unlike zero-sum stochastic games, a difficult problem in general-sum stochastic games is to obtain verifiable conditions for Nash equilibria. We show in this paper that by splitting an associated non-linear optimization problem into several sub-problems, characterization of Nash equilibria in a general-sum discounted stochastic games is possible. Using the aforementioned sub-problems, we in fact derive a set of necessary and sufficient verifiable conditions (termed KKT-SP conditions) for a strategy-pair to result in Nash equilibrium. Also, we show that any algorithm which tracks the zero of the gradient of the Lagrangian of every sub-problem provides a Nash strategy-pair. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Sum rules constraining the R-current spectral densities are derived holographically for the case of D3-branes, M2-branes and M5-branes all at finite chemical potentials. In each of the cases the sum rule relates a certain integral of the spectral density over the frequency to terms which depend both on long distance physics, hydrodynamics and short distance physics of the theory. The terms which which depend on the short distance physics result from the presence of certain chiral primaries in the OPE of two it-currents which are turned on at finite chemical potential. Since these sum rules contain information of the OPE they provide an alternate method to obtain the structure constants of the two R-currents and the chiral primary. As a consistency check we show that the 3 point function derived from the sum rule precisely matches with that obtained using Witten diagrams.
Resumo:
We derive exact expressions for the zeroth and the first three spectral moment sum rules for the retarded Green's function and for the zeroth and the first spectral moment sum rules for the retarded self-energy of the inhomogeneous Bose-Hubbard model in nonequilibrium, when the local on-site repulsion and the chemical potential are time-dependent, and in the presence of an external time-dependent electromagnetic field. We also evaluate these expressions for the homogeneous case in equilibrium, where all time dependence and external fields vanish. Unlike similar sum rules for the Fermi-Hubbard model, in the Bose-Hubbard model case, the sum rules often depend on expectation values that cannot be determined simply from parameters in the Hamiltonian like the interaction strength and chemical potential but require knowledge of equal-time many-body expectation values from some other source. We show how one can approximately evaluate these expectation values for the Mott-insulating phase in a systematic strong-coupling expansion in powers of the hopping divided by the interaction. We compare the exact moment relations to the calculated moments of spectral functions determined from a variety of different numerical approximations and use them to benchmark their accuracy. DOI: 10.1103/PhysRevA.87.013628