866 resultados para Expectation Maximization
Resumo:
Le modèle GARCH à changement de régimes est le fondement de cette thèse. Ce modèle offre de riches dynamiques pour modéliser les données financières en combinant une structure GARCH avec des paramètres qui varient dans le temps. Cette flexibilité donne malheureusement lieu à un problème de path dependence, qui a empêché l'estimation du modèle par le maximum de vraisemblance depuis son introduction, il y a déjà près de 20 ans. La première moitié de cette thèse procure une solution à ce problème en développant deux méthodologies permettant de calculer l'estimateur du maximum de vraisemblance du modèle GARCH à changement de régimes. La première technique d'estimation proposée est basée sur l'algorithme Monte Carlo EM et sur l'échantillonnage préférentiel, tandis que la deuxième consiste en la généralisation des approximations du modèle introduites dans les deux dernières décennies, connues sous le nom de collapsing procedures. Cette généralisation permet d'établir un lien méthodologique entre ces approximations et le filtre particulaire. La découverte de cette relation est importante, car elle permet de justifier la validité de l'approche dite par collapsing pour estimer le modèle GARCH à changement de régimes. La deuxième moitié de cette thèse tire sa motivation de la crise financière de la fin des années 2000 pendant laquelle une mauvaise évaluation des risques au sein de plusieurs compagnies financières a entraîné de nombreux échecs institutionnels. À l'aide d'un large éventail de 78 modèles économétriques, dont plusieurs généralisations du modèle GARCH à changement de régimes, il est démontré que le risque de modèle joue un rôle très important dans l'évaluation et la gestion du risque d'investissement à long terme dans le cadre des fonds distincts. Bien que la littérature financière a dévoué beaucoup de recherche pour faire progresser les modèles économétriques dans le but d'améliorer la tarification et la couverture des produits financiers, les approches permettant de mesurer l'efficacité d'une stratégie de couverture dynamique ont peu évolué. Cette thèse offre une contribution méthodologique dans ce domaine en proposant un cadre statistique, basé sur la régression, permettant de mieux mesurer cette efficacité.
Resumo:
La tomographie d’émission par positrons (TEP) est une modalité d’imagerie moléculaire utilisant des radiotraceurs marqués par des isotopes émetteurs de positrons permettant de quantifier et de sonder des processus biologiques et physiologiques. Cette modalité est surtout utilisée actuellement en oncologie, mais elle est aussi utilisée de plus en plus en cardiologie, en neurologie et en pharmacologie. En fait, c’est une modalité qui est intrinsèquement capable d’offrir avec une meilleure sensibilité des informations fonctionnelles sur le métabolisme cellulaire. Les limites de cette modalité sont surtout la faible résolution spatiale et le manque d’exactitude de la quantification. Par ailleurs, afin de dépasser ces limites qui constituent un obstacle pour élargir le champ des applications cliniques de la TEP, les nouveaux systèmes d’acquisition sont équipés d’un grand nombre de petits détecteurs ayant des meilleures performances de détection. La reconstruction de l’image se fait en utilisant les algorithmes stochastiques itératifs mieux adaptés aux acquisitions à faibles statistiques. De ce fait, le temps de reconstruction est devenu trop long pour une utilisation en milieu clinique. Ainsi, pour réduire ce temps, on les données d’acquisition sont compressées et des versions accélérées d’algorithmes stochastiques itératifs qui sont généralement moins exactes sont utilisées. Les performances améliorées par l’augmentation de nombre des détecteurs sont donc limitées par les contraintes de temps de calcul. Afin de sortir de cette boucle et permettre l’utilisation des algorithmes de reconstruction robustes, de nombreux travaux ont été effectués pour accélérer ces algorithmes sur les dispositifs GPU (Graphics Processing Units) de calcul haute performance. Dans ce travail, nous avons rejoint cet effort de la communauté scientifique pour développer et introduire en clinique l’utilisation des algorithmes de reconstruction puissants qui améliorent la résolution spatiale et l’exactitude de la quantification en TEP. Nous avons d’abord travaillé sur le développement des stratégies pour accélérer sur les dispositifs GPU la reconstruction des images TEP à partir des données d’acquisition en mode liste. En fait, le mode liste offre de nombreux avantages par rapport à la reconstruction à partir des sinogrammes, entre autres : il permet d’implanter facilement et avec précision la correction du mouvement et le temps de vol (TOF : Time-Of Flight) pour améliorer l’exactitude de la quantification. Il permet aussi d’utiliser les fonctions de bases spatio-temporelles pour effectuer la reconstruction 4D afin d’estimer les paramètres cinétiques des métabolismes avec exactitude. Cependant, d’une part, l’utilisation de ce mode est très limitée en clinique, et d’autre part, il est surtout utilisé pour estimer la valeur normalisée de captation SUV qui est une grandeur semi-quantitative limitant le caractère fonctionnel de la TEP. Nos contributions sont les suivantes : - Le développement d’une nouvelle stratégie visant à accélérer sur les dispositifs GPU l’algorithme 3D LM-OSEM (List Mode Ordered-Subset Expectation-Maximization), y compris le calcul de la matrice de sensibilité intégrant les facteurs d’atténuation du patient et les coefficients de normalisation des détecteurs. Le temps de calcul obtenu est non seulement compatible avec une utilisation clinique des algorithmes 3D LM-OSEM, mais il permet également d’envisager des reconstructions rapides pour les applications TEP avancées telles que les études dynamiques en temps réel et des reconstructions d’images paramétriques à partir des données d’acquisitions directement. - Le développement et l’implantation sur GPU de l’approche Multigrilles/Multitrames pour accélérer l’algorithme LMEM (List-Mode Expectation-Maximization). L’objectif est de développer une nouvelle stratégie pour accélérer l’algorithme de référence LMEM qui est un algorithme convergent et puissant, mais qui a l’inconvénient de converger très lentement. Les résultats obtenus permettent d’entrevoir des reconstructions en temps quasi-réel que ce soit pour les examens utilisant un grand nombre de données d’acquisition aussi bien que pour les acquisitions dynamiques synchronisées. Par ailleurs, en clinique, la quantification est souvent faite à partir de données d’acquisition en sinogrammes généralement compressés. Mais des travaux antérieurs ont montré que cette approche pour accélérer la reconstruction diminue l’exactitude de la quantification et dégrade la résolution spatiale. Pour cette raison, nous avons parallélisé et implémenté sur GPU l’algorithme AW-LOR-OSEM (Attenuation-Weighted Line-of-Response-OSEM) ; une version de l’algorithme 3D OSEM qui effectue la reconstruction à partir de sinogrammes sans compression de données en intégrant les corrections de l’atténuation et de la normalisation dans les matrices de sensibilité. Nous avons comparé deux approches d’implantation : dans la première, la matrice système (MS) est calculée en temps réel au cours de la reconstruction, tandis que la seconde implantation utilise une MS pré- calculée avec une meilleure exactitude. Les résultats montrent que la première implantation offre une efficacité de calcul environ deux fois meilleure que celle obtenue dans la deuxième implantation. Les temps de reconstruction rapportés sont compatibles avec une utilisation clinique de ces deux stratégies.
Resumo:
Two formulations of model-based object recognition are described. MAP Model Matching evaluates joint hypotheses of match and pose, while Posterior Marginal Pose Estimation evaluates the pose only. Local search in pose space is carried out with the Expectation--Maximization (EM) algorithm. Recognition experiments are described where the EM algorithm is used to refine and evaluate pose hypotheses in 2D and 3D. Initial hypotheses for the 2D experiments were generated by a simple indexing method: Angle Pair Indexing. The Linear Combination of Views method of Ullman and Basri is employed as the projection model in the 3D experiments.
Resumo:
We present a framework for learning in hidden Markov models with distributed state representations. Within this framework, we derive a learning algorithm based on the Expectation--Maximization (EM) procedure for maximum likelihood estimation. Analogous to the standard Baum-Welch update rules, the M-step of our algorithm is exact and can be solved analytically. However, due to the combinatorial nature of the hidden state representation, the exact E-step is intractable. A simple and tractable mean field approximation is derived. Empirical results on a set of problems suggest that both the mean field approximation and Gibbs sampling are viable alternatives to the computationally expensive exact algorithm.
Resumo:
"Expectation-Maximization'' (EM) algorithm and gradient-based approaches for maximum likelihood learning of finite Gaussian mixtures. We show that the EM step in parameter space is obtained from the gradient via a projection matrix $P$, and we provide an explicit expression for the matrix. We then analyze the convergence of EM in terms of special properties of $P$ and provide new results analyzing the effect that $P$ has on the likelihood surface. Based on these mathematical results, we present a comparative discussion of the advantages and disadvantages of EM and other algorithms for the learning of Gaussian mixture models.
Resumo:
Real-world learning tasks often involve high-dimensional data sets with complex patterns of missing features. In this paper we review the problem of learning from incomplete data from two statistical perspectives---the likelihood-based and the Bayesian. The goal is two-fold: to place current neural network approaches to missing data within a statistical framework, and to describe a set of algorithms, derived from the likelihood-based framework, that handle clustering, classification, and function approximation from incomplete data in a principled and efficient manner. These algorithms are based on mixture modeling and make two distinct appeals to the Expectation-Maximization (EM) principle (Dempster, Laird, and Rubin 1977)---both for the estimation of mixture components and for coping with the missing data.
Resumo:
We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM's). Learning is treated as a maximum likelihood problem; in particular, we present an Expectation-Maximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an on-line learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.
Resumo:
A neurofuzzy classifier identification algorithm is introduced for two class problems. The initial fuzzy base construction is based on fuzzy clustering utilizing a Gaussian mixture model (GMM) and the analysis of covariance (ANOVA) decomposition. The expectation maximization (EM) algorithm is applied to determine the parameters of the fuzzy membership functions. Then neurofuzzy model is identified via the supervised subspace orthogonal least square (OLS) algorithm. Finally a logistic regression model is applied to produce the class probability. The effectiveness of the proposed neurofuzzy classifier has been demonstrated using a real data set.
Resumo:
BACKGROUND: this study examined the association of -866G/A, Ala55Val, 45bpI/D, and -55C/T polymorphisms at the uncoupling protein (UCP) 3-2 loci with type 2 diabetes in Asian Indians. METHODS: a case-control study was performed among 1,406 unrelated subjects (487 with type 2 diabetes and 919 normal glucose-tolerant [NGT]), chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in Southern India. The polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Haplotype frequencies were estimated using an expectation-maximization algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. RESULTS: the genotype (P = 0.00006) and the allele (P = 0.00007) frequencies of Ala55Val of the UCP2 gene showed a significant protective effect against the development of type 2 diabetes. The odds ratios (adjusted for age, sex, and body mass index) for diabetes for individuals carrying Ala/Val was 0.72, and that for individuals carrying Val/Val was 0.37. Homeostasis insulin resistance model assessment and 2-h plasma glucose were significantly lower among Val-allele carriers compared to the Ala/Ala genotype within the NGT group. The genotype (P = 0.02) and the allele (P = 0.002) frequencies of -55C/T of the UCP3 gene showed a significant protective effect against the development of diabetes. The odds ratio for diabetes for individuals carrying CT was 0.79, and that for individuals carrying TT was 0.61. The haplotype analyses further confirmed the association of Ala55Val with diabetes, where the haplotypes carrying the Ala allele were significantly higher in the cases compared to controls. CONCLUSIONS: Ala55Val and -55C/T polymorphisms at the UCP3-2 loci are associated with a significantly reduced risk of developing type 2 diabetes in Asian Indians.
Resumo:
OBJECTIVE: To evaluate whether polymorphisms in the peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PPARGC1A) gene were related to body fat in Asian Indians. METHODS: Three polymorphisms of PPARGC1A gene, the Thr394Thr, Gly482Ser and +A2962G, were genotyped on 82 type 2 diabetic and 82 normal glucose tolerant (NGT) subjects randomly chosen from the Chennai Urban Rural Epidemiology Study using PCR-RFLP, and the nature of the variants were confirmed using direct sequencing. Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies using an expectation-maximization algorithm. Visceral, subcutaneous and total abdominal fat were measured using computed tomography, whereas dual X-ray absorptiometry was used to measure central abdominal and total body fat. RESULTS: None of the three polymorphisms studied were in LD. The genotype (0.59 vs 0.32, P=0.001) and allele (0.30 vs 0.17, P=0.007) frequencies of Thr394Thr polymorphism were significantly higher in type 2 diabetic subjects compared to those in NGT subjects. The odds ratio for diabetes (adjusted for age, sex and body mass index) for the susceptible genotype, XA (GA+AA) of Thr394Thr polymorphism, was 2.53 (95% confidence intervals: 1.30-5.04, P=0.009). Visceral and subcutaneous fat were significantly higher in NGT subjects with XA genotype of the Thr394Thr polymorphism compared to those with GG genotype (visceral fat: XA 148.2+/-46.9 vs GG 106.5+/-51.9 cm(2), P=0.001; subcutaneous fat: XA 271.8+/-167.1 vs GG 181.5+/-78.5 cm(2), P=0.001). Abdominal (XA 4521.9+/-1749.6 vs GG 3445.2+/-1443.4 g, P=0.004), central abdominal (XA 1689.0+/-524.0 vs GG 1228.5+/-438.7 g, P<0.0001) and non-abdominal fat (XA 18763.8+/-8789.4 vs GG 13160.4+/-4255.3 g, P<0.0001) were also significantly higher in the NGT subjects with XA genotype compared to those with GG genotype. The Gly482Ser and +A2962G polymorphisms were not associated with any of the body fat measures. CONCLUSION: Among Asian Indians, the Thr394Thr (G --> A) polymorphism is associated with increased total, visceral and subcutaneous body fat.
Resumo:
AIMS: The objective of the present investigation was to examine the relationship of three polymorphisms, Thr394Thr, Gly482Ser and +A2962G, of the peroxisome proliferator activated receptor-gamma co-activator-1 alpha (PGC-1alpha) gene with Type 2 diabetes in Asian Indians. METHODS: The study group comprised 515 Type 2 diabetic and 882 normal glucose tolerant subjects chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The three polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Haplotype frequencies were estimated using an expectation-maximization (EM) algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. RESULTS: The three polymorphisms studied were not in linkage disequilibrium. With respect to the Thr394Thr polymorphism, 20% of the Type 2 diabetic patients (103/515) had the GA genotype compared with 12% of the normal glucose tolerance (NGT) subjects (108/882) (P = 0.0004). The frequency of the A allele was also higher in Type 2 diabetic subjects (0.11) compared with NGT subjects (0.07) (P = 0.002). Regression analysis revealed the odds ratio for Type 2 diabetes for the susceptible genotype (XA) to be 1.683 (95% confidence intervals: 1.264-2.241, P = 0.0004). Age adjusted glycated haemoglobin (P = 0.003), serum cholesterol (P = 0.001) and low-density lipoprotein (LDL) cholesterol (P = 0.001) levels and systolic blood pressure (P = 0.001) were higher in the NGT subjects with the XA genotype compared with GG genotype. There were no differences in genotype or allelic distribution between the Type 2 diabetic and NGT subjects with respect to the Gly482Ser and +A2962G polymorphisms. CONCLUSIONS: The A allele of Thr394Thr (G --> A) polymorphism of the PGC-1 gene is associated with Type 2 diabetes in Asian Indian subjects and the XA genotype confers 1.6 times higher risk for Type 2 diabetes compared with the GG genotype in this population.
Resumo:
We explore the mutual dependencies and interactions among different groups of species of the plankton population, based on an analysis of the long-term field observations carried out by our group in the North–West coast of the Bay of Bengal. The plankton community is structured into three groups of species, namely, non-toxic phytoplankton (NTP), toxic phytoplankton (TPP) and zooplankton. To find the pair-wise dependencies among the three groups of plankton, Pearson and partial correlation coefficients are calculated. To explore the simultaneous interaction among all the three groups, a time series analysis is performed. Following an Expectation Maximization (E-M) algorithm, those data points which are missing due to irregularities in sampling are estimated, and with the completed data set a Vector Auto-Regressive (VAR) model is analyzed. The overall analysis demonstrates that toxin-producing phytoplankton play two distinct roles: the inhibition on consumption of toxic substances reduces the abundance of zooplankton, and the toxic materials released by TPP significantly compensate for the competitive disadvantages among phytoplankton species. Our study suggests that the presence of TPP might be a possible cause for the generation of a complex interaction among the large number of phytoplankton and zooplankton species that might be responsible for the prolonged coexistence of the plankton species in a fluctuating biomass.
Resumo:
A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion combining local component analysis for the finite mixture model. We start with a Parzen window estimator which has the Gaussian kernels with a common covariance matrix, the local component analysis is initially applied to find the covariance matrix using expectation maximization algorithm. Since the constraint on the mixing coefficients of a finite mixture model is on the multinomial manifold, we then use the well-known Riemannian trust-region algorithm to find the set of sparse mixing coefficients. The first and second order Riemannian geometry of the multinomial manifold are utilized in the Riemannian trust-region algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.
Resumo:
Scale mixtures of the skew-normal (SMSN) distribution is a class of asymmetric thick-tailed distributions that includes the skew-normal (SN) distribution as a special case. The main advantage of these classes of distributions is that they are easy to simulate and have a nice hierarchical representation facilitating easy implementation of the expectation-maximization algorithm for the maximum-likelihood estimation. In this paper, we assume an SMSN distribution for the unobserved value of the covariates and a symmetric scale mixtures of the normal distribution for the error term of the model. This provides a robust alternative to parameter estimation in multivariate measurement error models. Specific distributions examined include univariate and multivariate versions of the SN, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)