519 resultados para Exhaled breath
Resumo:
The objective of this study was to compare the short-term respiratory effects due to the inhalation of electronic and conventional tobacco cigarette-generated mainstream aerosols through the measurement of the exhaled nitric oxide (eNO). To this purpose, twenty-five smokers were asked to smoke a conventional cigarette and to vape an electronic cigarette (with and without nicotine), and an electronic cigarette without liquid (control session). Electronic and tobacco cigarette mainstream aerosols were characterized in terms of total particle number concentrations and size distributions. On the basis of the measured total particle number concentrations and size distributions, the average particle doses deposited in alveolar and tracheobronchial regions of the lungs for a single 2-s puff were also estimated considering a subject performing resting (sitting) activity. Total particle number concentrations in the mainstream resulted equal to 3.5 ± 0.4 × 109, 5.1 ± 0.1 × 109, and 3.1 ± 0.6 × 109 part. cm− 3 for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively. The corresponding alveolar doses for a resting subject were estimated equal to 3.8 × 1010, 5.2 × 1010 and 2.3 × 1010 particles. The mean eNO variations measured after each smoking/vaping session were equal to 3.2 ppb, 2.7 ppb and 2.8 ppb for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively; whereas, negligible eNO changes were measured in the control session. Statistical tests performed on eNO data showed statistically significant differences between smoking/vaping sessions and the control session, thus confirming a similar effect on human airways whatever the cigarette smoked/vaped, the nicotine content, and the particle dose received.
Resumo:
• In December 1986 funds were approved to double the intensity of random breath testing (RBT) and provide publicity support for police efforts. These changes were considered necessary to make RBT effective. • RBT methods were changed in the metropolitan area to enable block testing (pulling over a block of traffic rather than one or two cars), deployment of police to cut off escape routes, and testing by traffic patrols in all police subdivisions. Additional operators were trained for country RBT. • A publicity campaign was developed, aimed mainly at male drivers aged 18-50. The campaign consisted of the “cardsharp” television commercials, radio commercials, newspaper articles, posters and pamphlets. • Increased testing and the publicity campaigns were launched on 10 April 1987. • Police tests increased by 92.5% in May – December 1987, compared with the same period in the previous four years. • The detection rate for drinking drivers picked up by police who were cutting off escape routes was comparatively high, indicating that drivers were attempting to avoid RBT, and that this police method was effective at detecting these drivers. • A telephone survey indicated that drivers were aware of the messages of the publicity campaign. • The telephone survey also indicated that the target group had been exposed to high levels of RBT, as planned, and that fear of apprehension was the major factor deterring them from drink driving. • A roadside survey of driver blood alcohol concentrations (BACs) by the University of Adelaide’s Road Accident Research Unit (RARU) showed that, between 10p.m. and 3a.m., the proportion of drivers in Adelaide with a BAC greater than or equal to 0/08 decreased by 42%. • Drivers under 21 were identified as a possible problem area. • Fatalities in the twelve month period commencing May 1987 decreased by 18% in comparison with the previous twelve month period, and by 13% in comparison with the average of the previous two twelve month periods (commencing May 1985 and May 1986). There are indications that this trend is continuing. • It is concluded that the increase in RBT, plus publicity, was successful in achieving its aims of reductions in drink driving and accidents.
Resumo:
Random breath testing (RBT) was introduced in South Australia in 1981 with the intention of reducing the incidence of accidents involving alcohol. In April 1985, a Select Committee of the Upper House which had been established to “review the operation of random breath testing in this State and any other associated matters and report accordingly” presented its report. After consideration of this report, the Government introduced extensive amendments to those sections of the Motor Vehicles Act (MVA) and Road Traffic Act (RTA) which deal with RBT and drink driving penalties. The amended section 47da of the RTA requires that: “(5) The Minister shall cause a report to be prepared within three months after the end of each calendar year on the operation and effectiveness of this section and related sections during that calendar year. (6) The Minister shall, within 12 sitting days after receipt of a report under subsection (5), cause copies of the report to be laid before each House of Parliament.” This is the first such report. Whilst it deals with RBT over a full year, the changed procedures and improved flexibility allowed by the revision to the RTA were only introduced late in 1985 and then only to the extent that the existing resources would allow.
Resumo:
Measurement of fractional exhaled nitric oxide (FENO) has proven useful in assessment of patients with respiratory symptoms, especially in predicting steroid response. The objective of these studies was to clarify issues relevant for the clinical use of FENO. The influence of allergic sensitization per se on FENO in healthy asymptomatic subjects was studied, the association between airway inflammation and bronchial hyperresponsiveness (BHR) in steroid-naive subjects with symptoms suggesting asthma was examined, as well as the possible difference in this association between atopic and nonatopic subjects. Influence of smoking on FENO was compared between atopic and nonatopic steroid-naive asthmatics and healthy subjects. The short-term repeatability of FENO in COPD patients was examined in order to assess whether the degree of chronic obstruction influences the repeatability. For these purposes, we studied a random sample of 248 citizens of Helsinki, 227 army conscripts with current symptoms suggesting asthma, 19 COPD patients, and 39 healthy subjects. FENO measurement, spirometry and bronchodilatation test, structured interview. skin prick tests, and histamine and exercise challenges were performed. Among healthy subjects with no signs of airway diseases, median FENO was similar in skin prick test-positive and –negative subjects, and the upper normal limit of FENO was 30 ppb. In atopic and nonatopic subjects with symptoms suggesting asthma, FENO associated with severity of exercise- or histamine-induced BHR only in atopic patients. FENO in smokers with steroid-naive asthma was significantly higher than in healthy smokers and nonsmokers. Among atopic asthmatics, FENO was significantly lower in smokers than in nonsmokers, whereas no difference appeared among nonatopic asthmatics. The 24-h repeatability of FENO was equally good in COPD patients as in healthy subjects. These findings indicate that allergic sensitization per se does not influence FENO, supporting the view that elevated FENO indicates NO-producing airway inflammation, and that same reference range can be applied to both skin prick test-positive and -negative subjects. The significant correlation between FENO and degree of BHR only in atopic steroid-naive subjects with current asthmatic symptoms supports the view that pathogenesis of BHR in atopic asthma is strongly involved in NO-producing airway inflammation, whereas in development of BHR in nonatopic asthma other mechanisms may dominate. Attenuation of FENO only in atopic but not in nonatopic smokers with steroid-naive asthma may result from differences in mechanisms of FENO formation as well as in sensitivity of these mechanisms to smoking in atopic and nonatopic asthma. The results suggest, however, that in young adult smokers, FENO measurement may prove useful in assessment of airway inflammation. The short-term repeatability of FENO in COPD patients with moderate to very severe disease and in healthy subjects was equally good.
Resumo:
Airway inflammation is a key feature of bronchial asthma. In asthma management, according to international guidelines, the gold standard is anti-inflammatory treatment. Currently, only conventional procedures (i.e., symptoms, use of rescue medication, PEF-variability, and lung function tests) were used to both diagnose and evaluate the results of treatment with anti-inflammatory drugs. New methods for evaluation of degree of airway inflammation are required. Nitric oxide (NO) is a gas which is produced in the airways of healthy subjects and especially produced in asthmatic airways. Measurement of NO from the airways is possible, and NO can be measured from exhaled air. Fractional exhaled NO (FENO) is increased in asthma, and the highest concentrations are measured in asthmatic patients not treated with inhaled corticosteroids (ICS). Steroid-treated patients with asthma had levels of FENO similar to those of healthy controls. Atopic asthmatics had higher levels of FENO than did nonatopic asthmatics, indicating that level of atopy affected FENO level. Associations between FENO and bronchial hyperresponsiveness (BHR) occur in asthma. The present study demonstrated that measurement of FENO had good reproducibility, and the FENO variability was reasonable both short- and long-term in both healthy subjects and patients with respiratory symptoms or asthma. We demonstrated the upper normal limit for healthy subjects, which was 12 ppb calculated from two different healthy study populations. We showed that patients with respiratory symptoms who did not fulfil the diagnostic criteria of asthma had FENO values significantly higher than in healthy subjects, but significantly lower than in asthma patients. These findings suggest that BHR to histamine is a sensitive indicator of the effect of ICS and a valuable tool for adjustment of corticosteroid treatment in mild asthma. The findings further suggest that intermittent treatment periods of a few weeks’ duration are insufficient to provide long-term control of BHR in patients with mild persistent asthma. Moreover, during the treatment with ICS changes in BHR and changes in FENO were associated. FENO level was associated with BHR measured by a direct (histamine challenge) or indirect method (exercise challenge) in steroid-naïve symptomatic, non-smoking asthmatics. Although these associations could be found only in atopics, FENO level in nonatopic asthma was also increased. It can thus be concluded that assessment of airway inflammation by measuring FENO can be useful for clinical purposes. The methodology of FENO measurements is now validated. Especially in those patients with respiratory symptoms who did not fulfil the diagnostic criteria of asthma, FENO measurement can aid in treatment decisions. Serial measurement of FENO during treatment with ICS can be a complementary or an alternative method for evaluation in patients with asthma.
Resumo:
Bad breath or oral malodour can be related to gingival diseases, trimethylaminuria, various inflammation diseases of upper respiratory tract, foreign bodies in nasal cavity etc. Bad breath is usually, in 85 % to 95 % of cases, inflicted by gram negative anaerobic bacteria in tongue coating. These bacteria have a tendency of producing foul-smelling sulphur containing gases called volatile sulphur compounds or VSC. Main cause of bad breath is parodontitis or postnasal drip into posterior part of the tongue. Detecting bad breath is most efficiently done by organoleptic method. By skilled analyser the reason for oral malodour can be determined with great accuracy. For scientific study the most effective method is gas chromatography (GC) with flame photometric detector (FPD). With it almost every component of exhaled air can be detected both quantitative and qualitative. Effective chairside methods include portable sulphur monitors and saliva tests.
Resumo:
In this paper, the design and development of a novel low-cost, non-invasive type sensor suitable for human breath sensing is reported. It can be used to detect respiratory disorders like bronchial asthma by analyzing the recorded breathing pattern. Though there are devices like spirometer to diagnose asthma, they are very inconvenient for patient's use because patients are made to exhale air through mouth forcefully. Presently developed sensor will overcome this limitation and is helpful in the diagnosis of respiratory related abnormalities. Polyvinylidene fluoride (PVDF) film in cantilever configuration is used as a sensing element to form the breath sensor. Two identical sensors are mounted on a spectacle frame, such that the tidal flow of inhaled and exhale air will impinge on sensor, for sensing the breathing patterns. These patterns are recorded, filtered, analyzed and displayed using CRO. Further the sensor is calibrated using a U-tube water manometer. The added advantage of piezoelectric type sensing element is that it is self powered without the need of any external power source.