964 resultados para Exercise prescription
Resumo:
Exercise interventions during adjuvant cancer treatment have been shown to increase functional capacity, relieve fatigue and distress and in one recent study, assist chemotherapy completion. These studies have been limited to breast, prostate or mixed cancer groups and it is not yet known if a similar intervention is even feasible among women diagnosed with ovarian cancer. Women undergoing treatment for ovarian cancer commonly have extensive pelvic surgery followed by high intensity chemotherapy. It is hypothesized that women with ovarian cancer may benefit most from a customised exercise intervention during chemotherapy treatment. This could reduce the number and severity of chemotherapy-related side-effects and optimize treatment adherence. Hence, the aim of the research was to assess feasibility and acceptability of a walking intervention in women with ovarian cancer whilst undergoing chemotherapy, as well as pre-post intervention changes in a range of physical and psychological outcomes. Newly diagnosed women with ovarian cancer were recruited from the Royal Brisbane and Women’s Hospital (RBWH), to participate in a walking program throughout chemotherapy. The study used a one group pre- post-intervention test design. Baseline (conducted following surgery but prior to the first or second chemotherapy cycles) and follow-up (conducted three weeks after the last chemotherapy dose was received) assessments were performed. To accommodate changes in side-effects associated with treatment, specific weekly walking targets with respect to frequency, intensity and duration, were individualised for each participant. To assess feasibility, adherence and compliance with prescribed walking sessions, withdrawals and adverse events were recorded. Physical and psychological outcomes assessed included functional capacity, body composition, anxiety and depression, symptoms experienced during treatment and quality of life. Chemotherapy completion data was also documented and self-reported program helpfulness was assessed using a questionnaire post intervention. Forty-two women were invited to participate. Nine women were recruited, all of whom completed the program. There were no adverse events associated with participating in the intervention and all women reported that the walking program was helpful during their neo-adjuvant or adjuvant chemotherapy treatment. Adherence and compliance to the walking prescription was high. On average, women achieved at least two of their three individual weekly prescription targets 83% of the time (range 42% to 94%). Positive changes were found in functional capacity and quality of life, in addition to reductions in the number and intensity of treatment-associated symptoms over the course of the intervention period. Functional capacity increased for all nine women from baseline to follow-up assessment, with improvements ranging from 10% to 51%. Quality of life improvements were also noted, especially in the physical well-being scale (baseline: median 18; follow-up: median 23). Treatment symptoms reduced in presence and severity, specifically, in constipation, pain and fatigue, post intervention. These positive yet preliminary results suggest that a walking intervention for women receiving chemotherapy for ovarian cancer is safe, feasible and acceptable. Importantly, women perceived the program to be helpful and rewarding, despite being conducted during a time typically associated with elevated distress and treatment symptoms that are often severe enough to alter or cease chemotherapy prescription.
Resumo:
In Chronic Kidney Disease (CKD), management of diet is important in prevention of disease progression and symptom management, however evidence on nutrition prescription is limited. Recent international CKD guidelines and literature was reviewed to address the following question “What is the appropriate nutrition prescription to achieve positive outcomes in adult patients with chronic kidney disease?” Databases included in the search were Medline and CINAHL using EBSCOhost search engine, Embase and the Cochrane Database of Systematic Reviews published from 2000 to 2009. International guidelines pertaining to nutrition prescription in CKD were also reviewed from 2000 to 2013. Three hundred and eleven papers and eight guidelines were reviewed by three reviewers. Evidence was graded as per the National Health and Medical Research Council of Australia criteria. The evidence from thirty six papers was tabulated under the following headings: protein, weight loss, enteral support, vitamin D, sodium, fat, fibre, oral nutrition supplements, nutrition counselling, including protein and phosphate, nutrients in peritoneal dialysis solution and intradialytic parenteral nutrition, and was compared to international guidelines. While more evidence based studies are warranted, the customary nutrition prescription remains satisfactory with the exception of Vitamin D and phosphate. In these two areas, additional research is urgently needed given the potential of adverse outcomes for the CKD patient.
Resumo:
This research provides valuable insight into exercise barriers and prescription for individuals with cancer-related lymphoedema, particularly following breast cancer. Findings from this work demonstrate that by identifying and addressing exercise barriers, exercise confidence improves and, as such, enables longer-term exercise participation. Further, the findings demonstrating similar lymphoedema-related and physical and psychosocial benefits are achieved through participation in either resistance- or aerobic-based exercise highlights that exercise programs can be individualised, taking into consideration participants' interests, without jeopardising a woman's recovery and longer-term function, health, quality of life and survival.
Resumo:
Optimal bone metabolism is the result of hormonal, nutritional, and mechanical harmony, and a deficit in one area is usually impossible to overcome by improvements in others. Exercise during growth influences bone modeling locally at the regions being loaded, whereas calcium is thought to act systemically to influence bone remodeling. Despite acting through different mechanisms, a growing body of research suggests that exercise and calcium may not operate independently. Low dietary calcium intake or reduced bioavailability may minimize the adaptive response to exercise-induced bone loading. Conversely, adequate levels of calcium intake can maximize the positive effect of physical activity on bone health during the growth period of children and adolescents. Research also suggests that adequate levels of calcium intake can maximize bone density at the regions being loaded during exercise. Achieving optimal bone health and minimizing one’s risk of osteoporotic fracture later in life depend on a lifelong approach. This approach relies on the establishment of an optimum level of bone during the growth years, with a subsequent goal to maintain and slow the rate of age-related bone loss thereafter. Exercise, adequate nutrition, and optimal hormone levels are the components that influence the bone outcome. Making healthy nutritional choices, engaging in weight-bearing physical activity, and ensuring optimal hormone levels during growth provides a window of opportunity to build optimal bone mass, to reduce the risk of fracture later in life. Concurrent management of fracture risk with a physical activity prescription, adequate nutrition, and pharmacotherapy for osteoporosis when required offers the best approach to optimal bone health throughout adulthood.
Resumo:
OBJECTIVE: While there is a dose-response relationship between physical activity (PA) and health benefit, little is known about the effectiveness of different PA prescriptions on total daily PA. AIM: To test, under real-life conditions and using an objective, non-invasive measurement technique (accelerometry), the effect of prescribing additional physical activity (walking only) of different durations (30, 60 and 90 min/day) on compliance (to the activity prescribed) and compensation (to total daily PA). Participants in each group were prescribed 5 sessions of walking per week over 4 weeks. METHODS: 55 normal-weight and overweight women (mean BMI 25 ± 5 kg/m(2), height 165 ± 1 cm, weight 68 ± 2 kg and mean age 27 ± 1 years) were randomly assigned to 3 prescription groups: 30, 60 or 90 min/day PA. RESULTS: Walking duration resulted in an almost linear increase in the number of steps per day during the prescription period from an average of about 10,000 steps per day for the 30-min prescription to about 14,000 for the 90-min prescription. Compliance was excellent for the 30-min prescription but decreased significantly with 60-min and 90-min prescriptions. In parallel, degree of compensation subsequent to exercise increased progressively as length of prescription increased. CONCLUSION: A 30-min prescription of extra walking 5 times per week was well tolerated. However, in order to increase total PA further, much more than 60 min of walking may need to be prescribed in the majority of individuals. While total exercise 'volume' increased with prescriptions longer than 30 min, compliance to the prescription decreased and greater compensation was evident. © 2014 S. Karger GmbH, Freiburg.
Resumo:
Abstract Background The aim of the present study was to investigate the relationship between speed during maximum exercise test (ET) and oxygen consumption (VO2) in control and STZ-diabetic rats, in order to provide a useful method to determine exercise capacity and prescription in researches involving STZ-diabetic rats. Methods Male Wistar rats were divided into two groups: control (CG, n = 10) and diabetic (DG, n = 8). The animals were submitted to ET on treadmill with simultaneous gas analysis through open respirometry system. ET and VO2 were assessed 60 days after diabetes induction (STZ, 50 mg/Kg). Results VO2 maximum was reduced in STZ-diabetic rats (72.5 ± 1 mL/Kg/min-1) compared to CG rats (81.1 ± 1 mL/Kg/min-1). There were positive correlations between ET speed and VO2 (r = 0.87 for CG and r = 0.8 for DG), as well as between ET speed and VO2 reserve (r = 0.77 for CG and r = 0.7 for DG). Positive correlations were also obtained between measured VO2 and VO2 predicted values (r = 0.81 for CG and r = 0.75 for DG) by linear regression equations to CG (VO2 = 1.54 * ET speed + 52.34) and DG (VO2 = 1.16 * ET speed + 51.99). Moreover, we observed that 60% of ET speed corresponded to 72 and 75% of VO2 reserve for CG and DG, respectively. The maximum ET speed was also correlated with VO2 maximum for both groups (CG: r = 0.7 and DG: r = 0.7). Conclusion These results suggest that: a) VO2 and VO2 reserve can be estimated using linear regression equations obtained from correlations with ET speed for each studied group; b) exercise training can be prescribed based on ET in control and diabetic-STZ rats; c) physical capacity can be determined by ET. Therefore, ET, which involves a relatively simple methodology and low cost, can be used as an indicator of cardio-respiratory capacity in future studies that investigate the physiological effect of acute or chronic exercise in control and STZ-diabetic male rats.
Resumo:
Determination of an 'anaerobic threshold' plays an important role in the appreciation of an incremental cardiopulmonary exercise test and describes prominent changes of blood lactate accumulation with increasing workload. Two lactate thresholds are discerned during cardiopulmonary exercise testing and used for physical fitness estimation or training prescription. A multitude of different terms are, however, found in the literature describing the two thresholds. Furthermore, the term 'anaerobic threshold' is synonymously used for both, the 'first' and the 'second' lactate threshold, bearing a great potential of confusion. The aim of this review is therefore to order terms, present threshold concepts, and describe methods for lactate threshold determination using a three-phase model with reference to the historical and physiological background to facilitate the practical application of the term 'anaerobic threshold'.
Resumo:
Astronauts performing extravehicular activities (EVA) are at risk for occupational hazards due to a hypobaric environment, in particular Decompression Sickness (DCS). DCS results from nitrogen gas bubble formation in body tissues and venous blood. Denitrogenation achieved through lengthy staged decompression protocols has been the mainstay of prevention of DCS in space. Due to the greater number and duration of EVAs scheduled for construction and maintenance of the International Space Station, more efficient alternatives to accomplish missions without compromising astronaut safety are desirable. ^ This multi-center, multi-phase study (NASA-Prebreathe Reduction Protocol study, or PRP) was designed to identify a shorter denitrogenation protocol that can be implemented before an EVA, based on the combination of adynamia and exercise enhanced oxygen prebreathe. Human volunteers recruited at three sites (Texas, North Carolina and Canada) underwent three different combinations (“PRP phases”) of intense and light exercise prior to decompression in an altitude chamber. The outcome variables were detection of venous gas embolism (VGE) by precordial Doppler ultrasound, and clinical manifestations of DCS. Independent variables included age, gender, body mass index, oxygen consumption peak, peak heart rate, and PRP phase. Data analysis was performed both by pooling results from all study sites, and by examining each site separately. ^ Ten percent of the subjects developed DCS and 20% showed evidence of high grade VGE. No cases of DCS occurred in one particular PRP phase with use of the combination of dual-cycle ergometry (10 minutes at 75% of VO2 peak) plus 24 minutes of light EVA exercise (p = 0.04). No significant effects were found for the remaining independent variables on the occurrence of DCS. High grade VGE showed a strong correlation with subsequent development of DCS (sensitivity, 88.2%; specificity, 87.2%). In the presence of high grade VGE, the relative risk for DCS ranged from 7.52 to 35.0. ^ In summary, a good safety level can be achieved with exercise-enhanced oxygen denitrogenation that can be generalized to the astronaut population. Exercise is beneficial in preventing DCS if a specific schedule is followed, with an individualized VO2 prescription that provides a safety level that can then be applied to space operations. Furthermore, VGE Doppler detection is a useful clinical tool for prediction of altitude DCS. Because of the small number of high grade VGE episodes, the identification of a high probability DCS situation based on the presence of high grade VGE seems justified in astronauts. ^
Resumo:
This case report describes a strategy for assessing the suitability of orthotic prescription for individual patients with lower limb overuse injuries. The case concerns a 32 year old male soccer player with a two-year history of Achilles tendinopathy. A functional assessment performed before, during, and after a trial period of anti-pronation taping showed that taping reduced symptoms markedly and resulted in a 10-fold increase in pain-free jogging distance. This was interpreted as an indication for favourable orthotic intervention. Subsequently, orthotic intervention was associated with a similar reduction in symptoms and improvement in function. This case study illustrates how a trial period of anti-pronation taping could assist therapists to make decisions about prescription of orthoses for lower limb overuse injuries.
Resumo:
The power output achieved at peak oxygen consumption (VO2 peak) and the time this power can be maintained (i.e., Tmax) have been used in prescribing high-intensity interval training. In this context, the present study examined temporal aspects of the VO2 response to exercise at the cycling power that output well trained cyclists achieve their VO2 peak (i.e., Pmax). Following a progressive exercise test to determine VO2 peak, 43 well trained male cyclists (M age = 25 years, SD = 6; M mass = 75 kg SD = 7; M VO2 peak = 64.8 ml(.)kg(1.)min(-1), SD = 5.2) performed two Tmax tests 1 week apart.1. Values expressed for each participant are means and standard deviations of these two tests. Participants achieved a mean VO2 peak during the Tmax test after 176 s (SD = 40; = 74% of Tmax, SD = 12) and maintained it for 66 s (SD = 39; M = 26% of Tmax, SD = 12). Additionally they obtained mean 95 % of VO2 peak after 147 s (SD = 31; M = 62 % of Tmax, SD = 8) and maintained it for 95 s (SD = 38; M = 38 % of Tmax, SD = 8). These results suggest that 60-70% of Tmax is an appropriate exercise duration for a population of well trained cyclists to attain VO2 peak during exercise at Pmax. However due to intraparticipant variability in the temporal aspects of the VO2 response to exercise at Pmax, future research is needed to examine whether individual high-intensity interval training programs for well trained endurance athletes might best be prescribed according to an athlete's individual VO2 response to exercise at Pmax.