750 resultados para Exercise and metabolism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell proliferation, transcription and metabolism are regulated by complex partly overlapping signaling networks involving proteins in various subcellular compartments. The objective of this study was to increase our knowledge on such regulatory networks and their interrelationships through analysis of MrpL55, Vig, and Mat1 representing three gene products implicated in regulation of cell cycle, transcription, and metabolism. Genome-wide and biochemical in vitro studies have previously revealed MrpL55 as a component of the large subunit of the mitochondrial ribosome and demonstrated a possible role for the protein in cell cycle regulation. Vig has been implicated in heterochromatin formation and identified as a constituent of the RNAi-induced silencing complex (RISC) involved in cell cycle regulation and RNAi-directed transcriptional gene silencing (TGS) coupled to RNA polymerase II (RNAPII) transcription. Mat1 has been characterized as a regulatory subunit of cyclin-dependent kinase 7 (Cdk7) complex phosphorylating and regulating critical targets involved in cell cycle progression, energy metabolism and transcription by RNAPII. The first part of the study explored whether mRpL55 is required for cell viability or involved in a regulation of energy metabolism and cell proliferation. The results revealed a dynamic requirement of the essential Drosophila mRpL55 gene during development and suggested a function of MrpL55 in cell cycle control either at the G1/S or G2/M transition prior to cell differentiation. This first in vivo characterization of a metazoan-specific constituent of the large subunit of mitochondrial ribosome also demonstrated forth compelling evidence of the interconnection of nuclear and mitochondrial genomes as well as complex functions of the evolutionarily young metazoan-specific mitochondrial ribosomal proteins. In studies on the Drosophila RISC complex regulation, it was noted that Vig, a protein involved in heterochromatin formation, unlike other analyzed RISC associated proteins Argonaute2 and R2D2, is dynamically phosphorylated in a dsRNA-independent manner. Vig displays similarity with a known in vivo substrate for protein kinase C (PKC), human chromatin remodeling factor Ki-1/57, and is efficiently phosphorylated by PKC on multiple sites in vitro. These results suggest that function of the RISC complex protein Vig in RNAi-directed TGS and chromatin modification may be regulated through dsRNA-independent phosphorylation by PKC. In the third part of this study the role of Mat1 in regulating RNAPII transcription was investigated using cultured murine immortal fibroblasts with a conditional allele of Mat1. The results demonstrated that phosphorylation of the carboxy-terminal domain (CTD) of the large subunit of RNAPII in the heptapeptide YSPTSPS repeat in Mat-/- cells was over 10-fold reduced on Serine-5 and subsequently on Serine-2. Occupancy of the hypophosphorylated RNAPII in gene bodies was detectably decreased, whereas capping, splicing, histone methylation and mRNA levels were generally not affected. However, a subset of transcripts in absence of Mat1 was repressed and associated with decreased occupancy of RNAPII at promoters as well as defective capping. The results identify the Cdk7-CycH-Mat1 kinase submodule of TFIIH as a stimulatory non-essential regulator of transcriptional elongation and a genespecific essential factor for stable binding of RNAPII at the promoter region and capping. The results of these studies suggest important roles for both MrpL55 and Mat1 in cell cycle progression and their possible interplay at the G2/M stage in undifferentiated cells. The identified function of Mat1 and of TFIIH kinase complex in gene-specific transcriptional repression is challenging for further studies in regard to a possible link to Vig and RISC-mediated transcriptional gene silencing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the study was to compare the effect physical exercise and bright light has on mood in healthy, working-age subjects with varying degrees of depressive symptoms. Previous research suggests that exercise may have beneficial effects on mood at least in subjects with depression. Bright light exposure is an effective treatment of winter depression, and possibly of non-seasonal depression as well. Limited data exist on the effect of exercise and bright light on mood in non-clinical populations, and no research has been done on the combination of these interventions. Working-age subjects were recruited through occupational health centres and 244 subjects were randomized into intervention groups: exercise, either in bright light or normal lighting, and relaxation / stretching sessions, either in bright light or normal gym lighting. During the eight-week intervention in midwinter, subjects rated their mood using a self-rating version of the Hamilton Depression Scale with additional questions for atypical depressive symptoms. The main finding of the study was that both exercise and bright-light exposure were effective in treating depressive symptoms. When the interventions were combined, the relative reduction in the Hamilton Depression Scale was 40 to 66%, and in atypical depressive symptoms even higher, 45 to 85%. Bright light exposure was more effective than exercise in treating atypical depressive symptoms. No single factor could be found that would predict a good response to these interventions. In conclusion, aerobic physical exercise twice a week during wintertime was effective in treating depressive symptoms. Adding bright light exposure to exercise increased the benefit, especially by reducing atypical depressive symptoms. Since this is so, this treatment could prevent subsequent major depressive episodes among the population generally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-based inference approach to quantifying and interpreting effects, and in a case study example provide accurate probabilistic statements that correspond to the intended magnitude-based inferences. The model is described in the context of a published small-scale athlete study which employed a magnitude-based inference approach to compare the effect of two altitude training regimens (live high-train low (LHTL), and intermittent hypoxic exposure (IHE)) on running performance and blood measurements of elite triathletes. The posterior distributions, and corresponding point and interval estimates, for the parameters and associated effects and comparisons of interest, were estimated using Markov chain Monte Carlo simulations. The Bayesian analysis was shown to provide more direct probabilistic comparisons of treatments and able to identify small effects of interest. The approach avoided asymptotic assumptions and overcame issues such as multiple testing. Bayesian analysis of unscaled effects showed a probability of 0.96 that LHTL yields a substantially greater increase in hemoglobin mass than IHE, a 0.93 probability of a substantially greater improvement in running economy and a greater than 0.96 probability that both IHE and LHTL yield a substantially greater improvement in maximum blood lactate concentration compared to a Placebo. The conclusions are consistent with those obtained using a ‘magnitude-based inference’ approach that has been promoted in the field. The paper demonstrates that a fully Bayesian analysis is a simple and effective way of analysing small effects, providing a rich set of results that are straightforward to interpret in terms of probabilistic statements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transport of 1-14C-IAA in successive stem segments of Cuscuta was strictly basipetal in growing and non growing regions of the vine with a flux velocity of 10-12 mm/h (intercept method). This transport showed a distinct peaked profile, increasing from a low value at 10 mm from the apex to a maximum between 50 and 90 mm before declining to a low value again around 160 mm at which elongation growth ceased. The IAA transport profile paralleled the in vivo growth rate profile, though the latter peaked ahead of transport. A better correlation was observed between the profile of growth responsiveness of the vine to exogenous IAA application and the profile of IAA transport. Growth responsiveness was determined as the differential in growth rate of stem segments in vitro in the absence and presence of growth optimal concentration of IAA (10 μm). Retention of exogenous IAA in the stem was maximal where transport decreased, and this coincided with the region of maximal conjugation of applied 1-14C-IAA to aspartic acid to form indoleacetylaspartate (IAAsp). In addition to aspartate, IAA was conjugated to a small extent to an unidentified compound. IAA destruction by decarboxylation was greatest where transport was low, particularly in the nongrowing region, where lignification occurred (i.e., beyond 180 mm). At concentrations up to 20 μM, a pulse of 1-14C-IAA chased by "cold" IAA moved as a peak (with a peak displacement velocity of 12-18 mm/h) in the "growth" region of the vine, but became diffusionlike where growth either fell off steeply or ceased. At a higher (50 μM) IAA concentration, though uptake was not saturated, transport in the growth region became diffusionlike, indicating saturation of the system. Reduced IAA flux in the region where growth responsiveness to IAA declined coincided with the region of increased IAA conjugation. However, it cannot be concluded whether increased IAA conjugation was the cause or effect of decreased IAA flux. Application of benzyladenine to the vines in vivo, a treatment that elicited haustoria formation by 72 h, resulted in the inhibition of both IAA transport and elongation growth rate in the subapical region. In vitro treatment of vine segments with BA similarly increased IAA retention and decreased IAA transport. IAA loss was suppressed, and conjugation to IAAsp was enhanced. © 1989 Springer-Verlag New York Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inverse relationship that exists between thyroxine and the vitamin A level of plasma has been examined in chicken. Thyroxine treatment leads to a decrease in the level of vitamin A carrier proteins, retinol-binding protein and prealbumin-2 in plasma and liver. There is an accumulation of vitamin A in the liver, with a greater proportion of vitamin A alcohol being present compared to that of control birds. In thyroxine treatment there is enhanced plasma turnover of retinol-binding protein and prealbumin-2, while their rates of synthesis are marginally increased. Amino acid supplementation partially counteracts effects of thyroxine treatment. Amino acid supplementation of thyroxine-treated birds does not alter the plasma turnover rates of retinol-binding protein and prealbumin-2 but increases substentially their rates of synthesis. The release of vitamin A into circulation is interfered with in hyperthyroidism due to inadequate availability of retinol-binding protein being caused by enhanced plasma turnover rate not compensated for by synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Root absorption and translocation of [C-14]fluchloralin were determined in groundnut (Arachis hypogaea L.) cv. TMV-2 and pigweed (Amaranthus viridis L.) grown in nutrient solution culture under greenhouse conditions. Root-applied fluchloralin toxicity to groundnut and pigweed was also examined. A growth reduction of 50% occurred in groundnut that received fluchloralin at a concentration of 9.0 mum. Root absorption was similar for both groundnut and pigweed at one day after application (DAA), but groundnut absorbed about twice the amount of fluchloralin during 4 and 8 days of continuous application, compared with pigweed. Groundnut absorbed 25% of the total applied fluchloralin after 8 days. Translocation to leaves from treated roots was low and roots of groundnut contained 80% of the total absorbed C-14, 8 DAA. Contrary to the observations in groundnut, transport from the roots and leaves following root application in pigweed was rapid: 1 and 8 DAA, leaves of pigweed contained 45 and 70% of the total absorbed C-14, respectively. Different patterns of fluchloralin metabolism were observed in pigweed and groundnut. Pigweed metabolized most of the fluchloralin absorbed by roots. The fluchloralin tolerance of pigweed could partially be accounted for by absorption, translocation and metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A small stream in the French Alps was sampled at regular intervals to determine the size distribution of animals for growth studies. The temperature was also measured. The results obtained for Gammarus fossarum were compared with laboratory cultures and the laboratory animals were physiologically and chemically analysed. Chemical analysis was also carried out on field animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biosynthesis and metabolism of astaxanthin in coenobium alga Scenedesmus obliquus were investigated using a two-stage culture. The first stage was for the analysis of biosynthesis and accumulation of astaxanthin in alga cells which were cultured under induction conditions (incubation at 30 degrees C and illumination of 180 mu mol m(-2) s(-1)) for 48 h. The composition of the secondary carotenoids in algal cells was analyzed and seven ketocarotenoids were identified. The results implied that S. obliquus synthesized astaxanthin from beta-carotene through three possible pathways. In the second stage, the cultures were transferred to normal conditions (incubation at 25 C and illumination of 80 mu mol m(-2) s(-1)) for 72 h. Algal cells accumulated more chlorophyll and biosynthesis of secondary carotenoids terminated, the content of secondary carotenoids decreased from 59.48 to 6.57%. The results inferred that accumulation and metabolism of astaxanthin could be controlled by cultivated conditions which also could lead the mobilization of secondary carotenoids to support the algal cell growth. The results also implied that presumed conversions from astaxanthin to lutein or antheraxanthin could be modulated by culturing conditions. (C) 2008 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the effect of dietary vitamins A, D-3, E, and C on the gonad development, lipid peroxidation, and immune response of yearling rice field eel, Monopterus albus. A 6-wk feeding trial was designed according to an L-16(4(5)) orthogonal design, in which four vitamins, each at four supplementation levels, were arranged. Sixteen diets were mixed with the different vitamin levels and randomly assigned to 16 groups of fish. Increasing dietary vitamin E supplementation level significantly (P <= 0.05) increased the gonadosomatic index and lowered the serum content of malondialdehyde of rice field eel. Increasing dietary vitamin A and C levels also showed similar effect, but the differences were not statistically significant. Serum immunoglobulin M content increased significantly (P <= 0.01) as dietary vitamin C supplementation levels increased. The concentrations of calcium in bones showed significant (P <= 0.05) trend with vitamin D-3 and A supplementation levels, but the bone phosphorus content was not affected by the dietary vitamin levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the acetone-butanol-ethanol (ABE) fermentation of Clostridium acetobutylicum is currently uneconomic, the ability of the bacterium to metabolise a wide range of carbohydrates offers the potential for revival based on the use of cheap, low grade substrates. We have investigated the uptake and metabolism of lactose, the major sugar in industrial whey waste, by C. acetobutylicum ATCC 824. Lactose is taken up via a phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) comprising both soluble and membrane-associated components, and the resulting phosphorylated derivative is hydrolysed by a phospho--galactosidase. These activities are induced during growth on lactose, but are absent in glucose-grown cells. Analysis of the C. acetobutylicum genome sequence identified a gene system, lacRFEG, encoding a transcriptional regulator of the DeoR family, IIA and IICB components of a lactose PTS, and phospho--galactosidase. During growth in medium containing both glucose and lactose, C. acetobutylicum exhibited a classical diauxic growth, and the lac operon was not expressed until glucose was exhausted from the medium. The presence upstream of lacR of a potential catabolite responsive element (cre) encompassing the transcriptional start site is indicative of the mechanism of carbon catabolite repression characteristic of low-GC Gram-positive bacteria. A pathway for the uptake and metabolism of lactose by this industrially important organism is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis driven discovery in humans. Hypotheses underlying molecular mechanisms of disease, and gene/tissue function can be tested in rodents in order to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. Firstly we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis". Secondly we review specific transgenic and knock-out mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cell activation leads to engagement of cellular metabolic pathways necessary to support cell proliferation and function. However, our understanding of the signal transduction pathways that regulate metabolism and their impact on T cell function remains limited. The liver kinase B1 (LKB1) is a serine/threonine kinase that links cellular metabolism with cell growth and proliferation. In this study, we demonstrate that LKB1 is a critical regulator of T cell development, viability, activation, and metabolism. T cell-specific ablation of the gene that encodes LKB1 resulted in blocked thymocyte development and a reduction in peripheral T cells. LKB1-deficient T cells exhibited defects in cell proliferation and viability and altered glycolytic and lipid metabolism. Interestingly, loss of LKB1 promoted increased T cell activation and inflammatory cytokine production by both CD4(+) and CD8(+) T cells. Activation of the AMP-activated protein kinase (AMPK) was decreased in LKB1-deficient T cells. AMPK was found to mediate a subset of LKB1 functions in T lymphocytes, as mice lacking the α1 subunit of AMPK displayed similar defects in T cell activation, metabolism, and inflammatory cytokine production, but normal T cell development and peripheral T cell homeostasis. LKB1- and AMPKα1-deficient T cells each displayed elevated mammalian target of rapamycin complex 1 signaling and IFN-γ production that could be reversed by rapamycin treatment. Our data highlight a central role for LKB1 in T cell activation, viability, and metabolism and suggest that LKB1-AMPK signaling negatively regulates T cell effector function through regulation of mammalian target of rapamycin activity.