868 resultados para Exercise Performance


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Attempting to achieve the high diversity of training goals in modern competitive alpine skiing simultaneously can be difficult and may lead to compromised overall adaptation. Therefore, we investigated the effect of block training periodization on maximal oxygen consumption (VO2max) and parameters of exercise performance in elite junior alpine skiers. Six female and 15 male athletes were assigned to high-intensity interval (IT, N = 13) or control training groups (CT, N = 8). IT performed 15 high-intensity aerobic interval (HIT) sessions in 11 days. Sessions were 4 x 4 min at 90-95% of maximal heart rate separated by 3-min recovery periods. CT continued their conventionally mixed training, containing endurance and strength sessions. Before and 7 days after training, subjects performed a ramp incremental test followed by a high-intensity time-to-exhaustion (tlim) test both on a cycle ergometer, a 90-s high-box jump test as well as countermovement (CMJ) and squat jumps (SJ) on a force plate. IT significantly improved relative VO2max by 6.0% (P < 0.01; male +7.5%, female +2.1%), relative peak power output by 5.5% (P < 0.01) and power output at ventilatory threshold 2 by 9.6% (P < 0.01). No changes occurred for these measures in CT. tlim remained unchanged in both groups. High-box jump performance was significantly improved in males of IT only (4.9%, P < 0.05). Jump peak power (CMJ -4.8%, SJ -4.1%; P < 0.01), but not height decreased in IT only. For competitive alpine skiers, block periodization of HIT offers a promising way to efficiently improve VO2max and performance. Compromised explosive jump performance might be associated with persisting muscle fatigue.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exercise performance improvement after training in heart failure (HF) can be due to central or peripheral changes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study was to determine the effect of wearing a mouthguard on maximal exercise capacity and cardiopulmonary parameters at peak workload, and to assess the athletes' attitudes toward wearing a mouthguard. Thirteen volunteer male athletes (18 to 27 years old) were interviewed before and after delivery of a custom-made laminated mouthguard. A visual analogue scale (VAS, 0 - 100 mm) was used for judgment of interference with breathing, speaking, concentration and athletic performance. In addition, the athletes were subjected to a cardiorespiratory examination on a cycle ergometer with and without mouthguards. Subjectively, the athletes rated the mean interference with performance to be 37 mm VAS at the beginning of the study. Mean scores of impairment decreased to 23 mm VAS (p = 0.081) after wearing the mouthguard for four weeks, and further improved to 12 mm VAS (p < 0.001) after the test on the cycle ergometer. Objectively, the maximum workload during spiroergometry was even slightly elevated during exercise with the mouthguard (330.2 W) compared to exercise without the mouthguard (314.5 W). Peak minute ventilation and oxygen uptake were not different during exercise with and without the mouthguard. The present study demonstrated that a custom-made mouthguard does not significantly affect or reduce maximum exercise performance of athletes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIM It is unknown how the heart distinguishes various overloads, such as exercise or hypertension, causing either physiological or pathological hypertrophy. We hypothesize that alpha-calcitonin-gene-related peptide (αCGRP), known to be released from contracting skeletal muscles, is key at this remodelling. METHODS The hypertrophic effect of αCGRP was measured in vitro (cultured cardiac myocytes) and in vivo (magnetic resonance imaging) in mice. Exercise performance was assessed by determination of maximum oxygen consumption and time to exhaustion. Cardiac phenotype was defined by transcriptional analysis, cardiac histology and morphometry. Finally, we measured spontaneous activity, body fat content, blood volume, haemoglobin mass and skeletal muscle capillarization and fibre composition. RESULTS While αCGRP exposure yielded larger cultured cardiac myocytes, exercise-induced heart hypertrophy was completely abrogated by treatment with the peptide antagonist CGRP(8-37). Exercise performance was attenuated in αCGRP(-/-) mice or CGRP(8-37) treated wild-type mice but improved in animals with higher density of cardiac CGRP receptors (CLR-tg). Spontaneous activity, body fat content, blood volume, haemoglobin mass, muscle capillarization and fibre composition were unaffected, whereas heart index and ventricular myocyte volume were reduced in αCGRP(-/-) mice and elevated in CLR-tg. Transcriptional changes seen in αCGRP(-/-) (but not CLR-tg) hearts resembled maladaptive cardiac phenotype. CONCLUSIONS Alpha-calcitonin-gene-related peptide released by skeletal muscles during exercise is a hitherto unrecognized effector directing the strained heart into physiological instead of pathological adaptation. Thus, αCGRP agonists might be beneficial in heart failure patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: In this preliminary study we tested the effect of short-term carbohydrate supplementation on carbohydrate oxidation and walking performance in peripheral arterial disease. Methods: Eleven patients with peripheral arterial disease and intermittent claudication and 8 healthy control subjects completed several weeks of baseline exercise testing, then were given supplementation for 3 days with a carbohydrate solution and placebo. Maximal walking time was assessed with a graded treadmill test. Carbohydrate oxidation during a submaximal phase of this test was measured with indirect calorimetry. At the end of baseline testing a biopsy specimen was taken from the gastrocnemius muscle, and the active fraction of pyruvate dehydrogenase complex activity was determined. Results: Carbohydrate supplementation resulted in a significant increase in body weight and carbohydrate oxidation during exercise in patients with intermittent claudication and control subjects. Maximal walking time decreased by 3% in control subjects, whereas it increased by 6% in patients with intermittent claudication (group X treatment interaction, P < .05). There was a wide range of performance responses to carbohydrate supplementation among patients with claudication (-3%-37%). This effect was greater in poorer performers, and was negatively correlated (P < .05) with muscle pyruvate dehydrogenase complex activity. Conclusion: Preliminary data suggest that carbohydrate oxidation during exercise might contribute to exercise intolerance in more dysfunctional patients with intermittent claudication and that carbohydrate supplementation might be an effective therapeutic intervention in these patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to examine the influence of sprint training on metabolism and exercise performance during sprint exercise, 16 recreationally-active, untrained, men (TO2peak= 3.8+/-0.1 1.min(-1)) were randomly assigned to either a training (n=8) or control group (n=8). Each subject performed a 30-sec cycle sprint and a test to measure VO2peak before and after eight weeks of sprint training. The training group completed a series of sprints three times per week which progressed from three 30-sec cycle sprints in weeks 1 and 2, to six 30-sec sprints in weeks 7 and 8. Three mins of passive recovery separated each sprint throughout the training period. Muscle samples were obtained at rest and immediately following the pre- and post-training sprints and analysed for high energy phosphagens, glycogen and lactate; the activities of both phosphofructokinase (PFK) and citrate synthase (CS) were also measured and muscle fibre types were quantified, Training resulted in a 7.1% increase in mean power output (p

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVES We sought to determine if a hypertensive response to exercise (HRE) is associated with myocardial changes consistent with early hypertensive heart disease. BACKGROUND An HRE predicts the development of chronic hypertension (HT) and may reflect a preclinical stage of HT. METHODS Patients with a normal left ventricular (LV) ejection fraction and a negative stress test were recruited into three matched groups: 41 patients (age 56 +/- 10 years) with HRE (210/105 mm Hg in men; > 190/105 in women), comprising 22 patients with (HT+) and 19 without resting hypertension (HT-); and 17 matched control subjects without HRE. Long-axis function was determined by measurement of the strain rate (SR), peak systolic strain, and cyclic variation (CV) of integrated backscatter in three apical views. RESULTS An HRE was not associated with significant differences in LV mass index. Exercise performance and diastolic function were reduced in HRE(HT+) patients, but similar in HRE(HT-) patients and controls. Systolic dysfunction (peak systolic strain, SR, and CV) was significantly reduced in HRE patients (p < 0.001 for all). These reductions were equally apparent in patients with and without a history of resting HT (p = NS) and were independent of LV mass index and blood pressure (p < 0.01). CONCLUSIONS An HRE is associated with subtle systolic dysfunction, even in the absence of resting HT. These changes occur before the development of LV hypertrophy or detectable diastolic dysfunction and likely represent early hypertensive heart disease. (C) 2004 by the American College of Cardiology Foundation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background Diastolic heart failure (DHF) is characterized by dyspnea due to increased left ventricular (LV) filling pressures during stress. We sought the relationship of exercise-induced increases in B-type natriuretic peptide (BNP) to LV filling pressures and parameters of cardiovascular performance in suspected DHF. Methods Twenty-six treated hypertensive patients with suspected DHF (exertional dyspnea, LV ejection fraction >50%, and diastolic dysfunction) underwent maximal exercise echocardiography using the Bruce protocol. BNP, transmitral Doppler, and tissue Doppler for systolic (So) and early (Ea) and late (Aa) diastolic mitral annular velocities were obtained at rest and peak stress. LV filling pressures were estimated with E/Ea ratios. Results Resting BNP correlated with resting pulse pressure (r=0.45, P=0.02). Maximal exercise performance (4.6 +/- 2.5min) was limited by dyspnea. Blood pressure increased with exercise (from 143 +/- 19/88 +/- 8 to 191 +/- 22/90 +/- 10 mm Hg); 13 patients (50%) had a hypertensive response. Peak exercise BNP correlated with peak transmitral E velocity (r = 0.41, P <.05) and peak heart rate (r = -0.40, P <.05). BNP increased with exercise (from 48 57 to 74 97 pg/mL, P =.007), and the increment of BNP with exercise was associated with maximal workload and peak exercise So, Ea, and Aa (P <.01 for all). Filling pressures, approximated by lateral E/Ea ratio, increased with exercise (7.7 +/- 2.0 to 10.0 +/- 4.8, P <.01). BNP was higher in patients with possibly elevated filling pressures at peak exercise (E/Ea >10) compared to those with normal pressures (123 +/- 124 vs 45 +/- 71 pg/mL, P =.027). Conclusions Augmentation of BNP with exercise in hypertensive patients with suspected DHF is associated with better exercise capacity, LV systolic and diastolic function, and left atrial function. Peak exercise BNP levels may identify exercise-induced elevation of filling pressures in DHF.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: This study investigated leukocyte subset responses to moderate-intensity exercise under heat stress, with water (W) or carbohydrate (CHO) drink ingestion. Methods: In repeated trials, 13 soldiers consumed either a W or CHO drink during 3 h of walking at 4.4 km center dot h(-1) with a 5% gradient (15 min rest per hour) under heat stress (35 C and 55% relative humidity). The soldiers wore combat uniforms and carried water bottles and dummy rifles and ammunition, altogether weighing about 11.5 +/- 1.0 kg. Results: Plasma glucose concentration was significantly higher with CHO than W ingestion during exercise (p < 0.01). There were no significant differences between W and CHO conditions in exercise performance, plasma cortisol concentration, heart rate, or core temperature. CHO ingestion significantly moderated the increases in leukocyte (83% in W, 28% in CHO; p < 0.001), monocyte (60% in W, 34% in CHO; p < 0.05), and granulocyte counts (120% in W, 30% in CHO; p < 0.001), but not in lymphocyte count (41% in W, 25% in CHO). Conclusions: The increases in leukocyte and subset counts during moderate-intensity exercise under heat stress may be comparable to those observed during intense exercise in cool conditions. The response of immune cell counts is blunted by CHO intake during moderate-intensity exercise in the heat, and may not occur through the cortisol pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Muscle physiologists often describe fatigue simply as a decline of muscle force and infer this causes an athlete to slow down. In contrast, exercise scientists describe fatigue during sport competition more holistically as an exercise-induced impairment of performance. The aim of this review is to reconcile the different views by evaluating the many performance symptoms/measures and mechanisms of fatigue. We describe how fatigue is assessed with muscle, exercise or competition performance measures. Muscle performance (single muscle test measures) declines due to peripheral fatigue (reduced muscle cell force) and/or central fatigue (reduced motor drive from the CNS). Peak muscle force seldom falls by >30% during sport but is often exacerbated during electrical stimulation and laboratory exercise tasks. Exercise performance (whole-body exercise test measures) reveals impaired physical/technical abilities and subjective fatigue sensations. Exercise intensity is initially sustained by recruitment of new motor units and help from synergistic muscles before it declines. Technique/motor skill execution deviates as exercise proceeds to maintain outcomes before they deteriorate, e.g. reduced accuracy or velocity. The sensation of fatigue incorporates an elevated rating of perceived exertion (RPE) during submaximal tasks, due to a combination of peripheral and higher CNS inputs. Competition performance (sport symptoms) is affected more by decision-making and psychological aspects, since there are opponents and a greater importance on the result. Laboratory based decision making is generally faster or unimpaired. Motivation, self-efficacy and anxiety can change during exercise to modify RPE and, hence, alter physical performance. Symptoms of fatigue during racing, team-game or racquet sports are largely anecdotal, but sometimes assessed with time-motion analysis. Fatigue during brief all-out racing is described biomechanically as a decline of peak velocity, along with altered kinematic components. Longer sport events involve pacing strategies, central and peripheral fatigue contributions and elevated RPE. During match play, the work rate can decline late in a match (or tournament) and/or transiently after intense exercise bursts. Repeated sprint ability, agility and leg strength become slightly impaired. Technique outcomes, such as velocity and accuracy for throwing, passing, hitting and kicking, can deteriorate. Physical and subjective changes are both less severe in real rather than simulated sport activities. Little objective evidence exists to support exercise-induced mental lapses during sport. A model depicting mind-body interactions during sport competition shows that the RPE centre-motor cortex-working muscle sequence drives overall performance levels and, hence, fatigue symptoms. The sporting outputs from this sequence can be modulated by interactions with muscle afferent and circulatory feedback, psychological and decision-making inputs. Importantly, compensatory processes exist at many levels to protect against performance decrements. Small changes of putative fatigue factors can also be protective. We show that individual fatigue factors including diminished carbohydrate availability, elevated serotonin, hypoxia, acidosis, hyperkalaemia, hyperthermia, dehydration and reactive oxygen species, each contribute to several fatigue symptoms. Thus, multiple symptoms of fatigue can occur simultaneously and the underlying mechanisms overlap and interact. Based on this understanding, we reinforce the proposal that fatigue is best described globally as an exercise-induced decline of performance as this is inclusive of all viewpoints.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently there is confusion about the value of using nutritional support to treat malnutrition and improve functional outcomes in chronic obstructive pulmonary disease (COPD). This systematic review and meta-analysis of randomised controlled trials (RCTs) aimed to clarify the effectiveness of nutritional support in improving functional outcomes in COPD. A systematic review identified 12 RCTs (n = 448) in stable COPD patients investigating the effects of nutritional support [dietary advice (1 RCT), oral nutritional supplements (ONS; 10 RCTs), enteral tube feeding (1 RCT)] versus control on functional outcomes. Meta-analysis of the changes induced by intervention found that whilst respiratory function (FEV(1,) lung capacity, blood gases) was unresponsive to nutritional support, both inspiratory and expiratory muscle strength (PI max +3.86 SE 1.89 cm H(2) O, P = 0.041; PE max +11.85 SE 5.54 cm H(2) O, P = 0.032) and handgrip strength (+1.35 SE 0.69 kg, P = 0.05) were significantly improved, and associated with weight gains of ≥ 2 kg. Nutritional support produced significant improvements in quality of life in some trials, although meta-analysis was not possible. It also led to improved exercise performance and enhancement of exercise rehabilitation programmes. This systematic review and meta-analysis demonstrates that nutritional support in COPD results in significant improvements in a number of clinically relevant functional outcomes, complementing a previous review showing improvements in nutritional intake and weight.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Commencing selected workouts with low muscle glycogen availability augments several markers of training adaptation compared with undertaking the same sessions with normal glycogen content. However, low glycogen availability reduces the capacity to perform high-intensity (>85% of peak aerobic power (V·O2peak)) endurance exercise. We determined whether a low dose of caffeine could partially rescue the reduction in maximal self-selected power output observed when individuals commenced high-intensity interval training with low (LOW) compared with normal (NORM) glycogen availability. Methods Twelve endurance-trained cyclists/triathletes performed four experimental trials using a double-blind Latin square design. Muscle glycogen content was manipulated via exercise–diet interventions so that two experimental trials were commenced with LOW and two with NORM muscle glycogen availability. Sixty minutes before an experimental trial, subjects ingested a capsule containing anhydrous caffeine (CAFF, 3 mg-1·kg-1 body mass) or placebo (PLBO). Instantaneous power output was measured throughout high-intensity interval training (8 × 5-min bouts at maximum self-selected intensity with 1-min recovery). Results There were significant main effects for both preexercise glycogen content and caffeine ingestion on power output. LOW reduced power output by approximately 8% compared with NORM (P < 0.01), whereas caffeine increased power output by 2.8% and 3.5% for NORM and LOW, respectively, (P < 0.01). Conclusion We conclude that caffeine enhanced power output independently of muscle glycogen concentration but could not fully restore power output to levels commensurate with that when subjects commenced exercise with normal glycogen availability. However, the reported increase in power output does provide a likely performance benefit and may provide a means to further enhance the already augmented training response observed when selected sessions are commenced with reduced muscle glycogen availability. It has long been known that endurance training induces a multitude of metabolic and morphological adaptations that improve the resistance of the trained musculature to fatigue and enhance endurance capacity and/or exercise performance (13). Accumulating evidence now suggests that many of these adaptations can be modified by nutrient availability (9–11,21). Growing evidence suggests that training with reduced muscle glycogen using a “train twice every second day” compared with a more traditional “train once daily” approach can enhance the acute training response (29) and markers representative of endurance training adaptation after short-term (3–10 wk) training interventions (8,16,30). Of note is that the superior training adaptation in these previous studies was attained despite a reduction in maximal self-selected power output (16,30). The most obvious factor underlying the reduced intensity during a second training bout is the reduction in muscle glycogen availability. However, there is also the possibility that other metabolic and/or neural factors may be responsible for the power drop-off observed when two exercise bouts are performed in close proximity. Regardless of the precise mechanism(s), there remains the intriguing possibility that the magnitude of training adaptation previously reported in the face of a reduced training intensity (Hulston et al. (16) and Yeo et al.) might be further augmented, and/or other aspects of the training stimulus better preserved, if power output was not compromised. Caffeine ingestion is a possible strategy that might “rescue” the aforementioned reduction in power output that occurs when individuals commence high-intensity interval training (HIT) with low compared with normal glycogen availability. Recent evidence suggests that, at least in endurance-based events, the maximal benefits of caffeine are seen at small to moderate (2–3 mg·kg-1 body mass (BM)) doses (for reviews, see Refs. (3,24)). Accordingly, in this study, we aimed to determine the effect of a low dose of caffeine (3 mg·kg-1 BM) on maximal self-selected power output during HIT commenced with either normal (NORM) or low (LOW) muscle glycogen availability. We hypothesized that even under conditions of low glycogen availability, caffeine would increase maximal self-selected power output and thereby partially rescue the reduction in training intensity observed when individuals commence HIT with low glycogen availability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-invasive ventilation may be a means to temporarily reverse or slow the progression of respiratory failure in cystic fibrosis. To compare the effect of non-invasive ventilation versus no non-invasive ventilation in people with cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching relevant journals and abstract books of conference proceedings. We searched the reference lists of each trial for additional publications possibly containing other trials.Most recent search: 22 February 2013. Randomised controlled trials comparing a form of pressure preset or volume preset non-invasive ventilation to no non-invasive ventilation in people with acute or chronic respiratory failure in cystic fibrosis. Three reviewers independently assessed trials for inclusion criteria and methodological quality, and extracted data. Fifteen trials were identified; seven trials met the inclusion criteria with a total of 106 participants. Six trials evaluated single treatment sessions and one evaluated a six-week intervention.Four trials (79 participants) evaluated non-invasive ventilation for airway clearance compared with an alternative chest physiotherapy method and showed that airway clearance may be easier with non-invasive ventilation and people with cystic fibrosis may prefer it. We were unable to find any evidence that NIV increases sputum expectoration, but it did improve some lung function parameters.Three trials (27 participants) evaluated non-invasive ventilation for overnight ventilatory support, measuring lung function, validated quality of life scores and nocturnal transcutaneous carbon dioxide. Due to the small numbers of participants and statistical issues, there were discrepancies in the results between the RevMan and the original trial analyses. No clear differences were found between non-invasive ventilation compared with oxygen or room air except for exercise performance, which significantly improved with non-invasive ventilation compared to room air over six weeks. Non-invasive ventilation may be a useful adjunct to other airway clearance techniques, particularly in people with cystic fibrosis who have difficulty expectorating sputum. Non-invasive ventilation, used in addition to oxygen, may improve gas exchange during sleep to a greater extent than oxygen therapy alone in moderate to severe disease. These benefits of non-invasive ventilation have largely been demonstrated in single treatment sessions with small numbers of participants. The impact of this therapy on pulmonary exacerbations and disease progression remain unclear. There is a need for long-term randomised controlled trials which are adequately powered to determine the clinical effects of non-invasive ventilation in cystic fibrosis airway clearance and exercise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Strokes affect thousands of people worldwide leaving sufferers with severe disabilities affecting their daily activities. In recent years, new rehabilitation techniques have emerged such as constraint-induced therapy, biofeedback therapy and robot-aided therapy. In particular, robotic techniques allow precise recording of movements and application of forces to the affected limb, making it a valuable tool for motor rehabilitation. In addition, robot-aided therapy can utilise visual cues conveyed on a computer screen to convert repetitive movement practice into an engaging task such as a game. Visual cues can also be used to control the information sent to the patient about exercise performance and to potentially address psychosomatic variables influencing therapy. This paper overviews the current state-of-the-art on upper limb robot-mediated therapy with a focal point on the technical requirements of robotic therapy devices leading to the development of upper limb rehabilitation techniques that facilitate reach-to-touch, fine motor control, whole-arm movements and promote rehabilitation beyond hospital stay. The reviewed literature suggest that while there is evidence supporting the use of this technology to reduce functional impairment, besides the technological push, the challenge ahead lies on provision of effective assessment of outcome and modalities that have a stronger impact transferring functional gains into functional independence.