955 resultados para Exact solution
Resumo:
It is well known that structures subjected to dynamic loads do not follow the usual similarity laws when the material is strain rate sensitive. As a consequence, it is not possible to use a scaled model to predict the prototype behaviour. In the present study, this problem is overcome by changing the impact velocity so that the model behaves exactly as the prototype. This exact solution is generated thanks to the use of an exponential constitutive law to infer the dynamic flow stress. Furthermore, it is shown that the adopted procedure does not rely on any previous knowledge of the structure response. Three analytical models are used to analyze the performance of the technique. It is shown that perfect similarity is achieved, regardless of the magnitude of the scaling factor. For the class of material used, the solution outlined has long been sought, inasmuch as it allows perfect similarity for strain rate sensitive structures subject to impact loads. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a study on the role of the long-range term of excess Gibbs energy models in the modeling of aqueous systems containing polymers and salts is presented. Four different approaches on how to account for the presence of polymer in the long-range term were considered, and simulations were conducted considering aqueous solutions of three different salts. The analysis of water activity curves showed that, in all cases, a liquid-phase separation may be introduced by the sole presence of the polymer in the long-range term, regardless of how it is taken into account. The results lead to the conclusion that there is no single exact solution for this problem, and that any kind of approach may introduce inconsistencies.
Resumo:
We show that integrability of the BCS model extends beyond Richardson's model (where all Cooper pair scatterings have equal coupling) to that of the Russian doll BCS model for which the couplings have a particular phase dependence that breaks time-reversal symmetry. This model is shown to be integrable using the quantum inverse scattering method, and the exact solution is obtained by means of the algebraic Bethe ansatz. The inverse problem of expressing local operators in terms of the global operators of the monodromy matrix is solved. This result is used to find a determinant formulation of a correlation function for fluctuations in the Cooper pair occupation numbers. These results are used to undertake exact numerical analysis for small systems at half-filling.
Resumo:
An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.
Resumo:
This paper presents the recent finding by Muhlhaus et al [1] that bifurcation of crack growth patterns exists for arrays of two-dimensional cracks. This bifurcation is a result of the nonlinear effect due to crack interaction, which is, in the present analysis, approximated by the dipole asymptotic or pseudo-traction method. The nonlinear parameter for the problem is the crack length/ spacing ratio lambda = a/h. For parallel and edge crack arrays under far field tension, uniform crack growth patterns (all cracks having same size) yield to nonuniform crack growth patterns (i.e. bifurcation) if lambda is larger than a critical value lambda(cr) (note that such bifurcation is not found for collinear crack arrays). For parallel and edge crack arrays respectively, the value of lambda(cr) decreases monotonically from (2/9)(1/2) and (2/15.096)(1/2) for arrays of 2 cracks, to (2/3)(1/2)/pi and (2/5.032)(1/2)/pi for infinite arrays of cracks. The critical parameter lambda(cr) is calculated numerically for arrays of up to 100 cracks, whilst discrete Fourier transform is used to obtain the exact solution of lambda(cr) for infinite crack arrays. For geomaterials, bifurcation can also occurs when array of sliding cracks are under compression.
Resumo:
The distributed-tubes model of hepatic elimination is extended to include intermixing between sinusoids, resulting in the formulation of a new, interconnected-tubes model. The new model is analysed for the simple case of two interconnected tubes, where an exact solution is obtained. For the case of many strongly-interconnected tubes, it is shown that a zeroth-order approximation leads to the convection-dispersion model. As a consequence the dispersion number is expressed, for the first time, in terms of its main physiological determinants: heterogeneity of flow and density of interconnections between sinusoids. The analysis of multiple indicator dilution data from a perfused liver preparation using the simplest version of the model yields the estimate 10.3 for the average number of interconnections. The problem of boundary conditions for the dispersion model is considered from the viewpoint that the dispersion-convection equation is a zeroth-order approximation to the equations for the interconnected-tubes model. (C) 1997 Academic Press Limited.
Resumo:
We extend a recent construction for an integrable model describing Josephson tunneling between identical BCS systems to the case where the BCS systems have different single particle energy levels. The exact solution of this generalized model is obtained through the Bethe ansatz.
Resumo:
Free-space optical interconnects (FSOIs), made up of dense arrays of vertical-cavity surface-emitting lasers, photodetectors and microlenses can be used for implementing high-speed and high-density communication links, and hence replace the inferior electrical interconnects. A major concern in the design of FSOIs is minimization of the optical channel cross talk arising from laser beam diffraction. In this article we introduce modifications to the mode expansion method of Tanaka et al. [IEEE Trans. Microwave Theory Tech. MTT-20, 749 (1972)] to make it an efficient tool for modelling and design of FSOIs in the presence of diffraction. We demonstrate that our modified mode expansion method has accuracy similar to the exact solution of the Huygens-Kirchhoff diffraction integral in cases of both weak and strong beam clipping, and that it is much more accurate than the existing approximations. The strength of the method is twofold: first, it is applicable in the region of pronounced diffraction (strong beam clipping) where all other approximations fail and, second, unlike the exact-solution method, it can be efficiently used for modelling diffraction on multiple apertures. These features make the mode expansion method useful for design and optimization of free-space architectures containing multiple optical elements inclusive of optical interconnects and optical clock distribution systems. (C) 2003 Optical Society of America.
Resumo:
Reliable flow simulation software is inevitable to determine an optimal injection strategy in Liquid Composite Molding processes. Several methodologies can be implemented into standard software in order to reduce CPU time. Post-processing techniques might be one of them. Post-processing a finite element solution is a well-known procedure, which consists in a recalculation of the originally obtained quantities such that the rate of convergence increases without the need for expensive remeshing techniques. Post-processing is especially effective in problems where better accuracy is required for derivatives of nodal variables in regions where Dirichlet essential boundary condition is imposed strongly. In previous works influence of smoothness of non-homogeneous Dirichlet condition, imposed on smooth front was examined. However, usually quite a non-smooth boundary is obtained at each time step of the infiltration process due to discretization. Then direct application of post-processing techniques does not improve final results as expected. The new contribution of this paper lies in improvement of the standard methodology. Improved results clearly show that the recalculated flow front is closer to the ”exact” one, is smoother that the previous one and it improves local disturbances of the “exact” solution.
Resumo:
When using a polynomial approximating function the most contentious aspect of the Heat Balance Integral Method is the choice of power of the highest order term. In this paper we employ a method recently developed for thermal problems, where the exponent is determined during the solution process, to analyse Stefan problems. This is achieved by minimising an error function. The solution requires no knowledge of an exact solution and generally produces significantly better results than all previous HBI models. The method is illustrated by first applying it to standard thermal problems. A Stefan problem with an analytical solution is then discussed and results compared to the approximate solution. An ablation problem is also analysed and results compared against a numerical solution. In both examples the agreement is excellent. A Stefan problem where the boundary temperature increases exponentially is analysed. This highlights the difficulties that can be encountered with a time dependent boundary condition. Finally, melting with a time-dependent flux is briefly analysed without applying analytical or numerical results to assess the accuracy.
Resumo:
The Network Revenue Management problem can be formulated as a stochastic dynamic programming problem (DP or the\optimal" solution V *) whose exact solution is computationally intractable. Consequently, a number of heuristics have been proposed in the literature, the most popular of which are the deterministic linear programming (DLP) model, and a simulation based method, the randomized linear programming (RLP) model. Both methods give upper bounds on the optimal solution value (DLP and PHLP respectively). These bounds are used to provide control values that can be used in practice to make accept/deny decisions for booking requests. Recently Adelman [1] and Topaloglu [18] have proposed alternate upper bounds, the affine relaxation (AR) bound and the Lagrangian relaxation (LR) bound respectively, and showed that their bounds are tighter than the DLP bound. Tight bounds are of great interest as it appears from empirical studies and practical experience that models that give tighter bounds also lead to better controls (better in the sense that they lead to more revenue). In this paper we give tightened versions of three bounds, calling themsAR (strong Affine Relaxation), sLR (strong Lagrangian Relaxation) and sPHLP (strong Perfect Hindsight LP), and show relations between them. Speciffically, we show that the sPHLP bound is tighter than sLR bound and sAR bound is tighter than the LR bound. The techniques for deriving the sLR and sPHLP bounds can potentially be applied to other instances of weakly-coupled dynamic programming.
Resumo:
We study the collision of a gravitational wave pulse and a soliton wave on a spatially homogeneous background. This collision is described by an exact solution of Einsteins equations in a vacuum which is generated from a nondiagonal seed by means of a soliton transformation. The effect produced by the soliton on the amplitude and polarization of the wave is considered.
Resumo:
We develop a systematic method to derive all orders of mode couplings in a weakly nonlinear approach to the dynamics of the interface between two immiscible viscous fluids in a Hele-Shaw cell. The method is completely general: it applies to arbitrary geometry and driving. Here we apply it to the channel geometry driven by gravity and pressure. The finite radius of convergence of the mode-coupling expansion is found. Calculation up to third-order couplings is done, which is necessary to account for the time-dependent Saffman-Taylor finger solution and the case of zero viscosity contrast. The explicit results provide relevant analytical information about the role that the viscosity contrast and the surface tension play in the dynamics of the system. We finally check the quantitative validity of different orders of approximation and a resummation scheme against a physically relevant, exact time-dependent solution. The agreement between the low-order approximations and the exact solution is excellent within the radius of convergence, and is even reasonably good beyond this radius.
Resumo:
We study the collision of a gravitational wave pulse and a soliton wave on a spatially homogeneous background. This collision is described by an exact solution of Einsteins equations in a vacuum which is generated from a nondiagonal seed by means of a soliton transformation. The effect produced by the soliton on the amplitude and polarization of the wave is considered.
Resumo:
An exact solution of the Einstein equations in vacuum representing two pairs of gravitational solitons propagating on an expanding universe is given and studied. It is suggested that the solitons evolve from quasiparticles to pure gravitational waves. Two of the four solitons collide and the focusing produced on null rays is studied. Although the spacetime following the collision is highly distorted, null rays do not focus to a singularity.