940 resultados para Evolutionary optimization methods


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The final contents of total and individual trans-fatty acids of sunflower oil, produced during the deacidification step of physical refining were obtained using a computational simulation program that considered cis-trans isomerization reaction features for oleic, linoleic, and linolenic acids attached to the glycerol part of triacylglycerols. The impact of process variables, such as temperature and liquid flow rate, and of equipment configuration parameters, such as liquid height, diameter, and number of stages, that influence the retention time of the oil in the equipment was analyzed using the response-surface methodology (RSM). The computational simulation and the RSM results were used in two different optimization methods, aiming to minimize final levels of total and individual trans-fatty acids (trans-FA), while keeping neutral oil loss and final oil acidity at low values. The main goal of this work was to indicate that computational simulation, based on a careful modeling of the reaction system, combined with optimization could be an important tool for indicating better processing conditions in industrial physical refining plants of vegetable oils, concerning trans-FA formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A system built in terms of autonomous agents may require even greater correctness assurance than one which is merely reacting to the immediate control of its users. Agents make substantial decisions for themselves, so thorough testing is an important consideration. However, autonomy also makes testing harder; by their nature, autonomous agents may react in different ways to the same inputs over time, because, for instance they have changeable goals and knowledge. For this reason, we argue that testing of autonomous agents requires a procedure that caters for a wide range of test case contexts, and that can search for the most demanding of these test cases, even when they are not apparent to the agents’ developers. In this paper, we address this problem, introducing and evaluating an approach to testing autonomous agents that uses evolutionary optimization to generate demanding test cases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An inverse problem concerning the industrial process of steel bars hardening and tempering is considered. The associated optimization problem is formulated in terms of membership functions and, for the sake of comparison, also in terms of quadratic residuals; both geometric and electromagnetic design variables have been considered. The numerical solution is achieved by coupling a finite difference procedure for the calculation of the electromagnetic and thermal fields to a deterministic strategy of minimization based on modified Flctcher and Reeves method. © 1998 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the past few years, the field of global optimization has been very active, producing different kinds of deterministic and stochastic algorithms for optimization in the continuous domain. These days, the use of evolutionary algorithms (EAs) to solve optimization problems is a common practice due to their competitive performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex optimization problems. Differential evolution (DE) algorithms are a family of evolutionary optimization techniques that use a rather greedy and less stochastic approach to problem solving, when compared to classical evolutionary algorithms. The main idea is to construct, at each generation, for each element of the population a mutant vector, which is constructed through a specific mutation operation based on adding differences between randomly selected elements of the population to another element. Due to its simple implementation, minimum mathematical processing and good optimization capability, DE has attracted attention. This paper proposes a new approach to solve electromagnetic design problems that combines the DE algorithm with a generator of chaos sequences. This approach is tested on the design of a loudspeaker model with 17 degrees of freedom, for showing its applicability to electromagnetic problems. The results show that the DE algorithm with chaotic sequences presents better, or at least similar, results when compared to the standard DE algorithm and other evolutionary algorithms available in the literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the recent years TNFRSF13B coding variants have been implicated by clinical genetics studies in Common Variable Immunodeficiency (CVID), the most common clinically relevant primary immunodeficiency in individuals of European ancestry, but their functional effects in relation to the development of the disease have not been entirely established. To examine the potential contribution of such variants to CVID, the more comprehensive perspective of an evolutionary approach was applied in this study, underling the belief that evolutionary genetics methods can play a role in dissecting the origin, causes and diffusion of human diseases, representing a powerful tool also in human health research. For this purpose, TNFRSF13B coding region was sequenced in 451 healthy individuals belonging to 26 worldwide populations, in addition to 96 control, 77 CVID and 38 Selective IgA Deficiency (IgAD) individuals from Italy, leading to the first achievement of a global picture of TNFRSF13B nucleotide diversity and haplotype structure and making suggestion of its evolutionary history possible. A slow rate of evolution, within our species and when compared to the chimpanzee, low levels of genetic diversity geographical structure and the absence of recent population specific selective pressures were observed for the examined genomic region, suggesting that geographical distribution of its variability is more plausibly related to its involvement also in innate immunity rather than in adaptive immunity only. This, together with the extremely subtle disease/healthy samples differences observed, suggests that CVID might be more likely related to still unknown environmental and genetic factors, rather than to the nature of TNFRSF13B variants only.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this Doctoral Thesis is to develop a genetic algorithm based optimization methods to find the best conceptual design architecture of an aero-piston-engine, for given design specifications. Nowadays, the conceptual design of turbine airplanes starts with the aircraft specifications, then the most suited turbofan or turbo propeller for the specific application is chosen. In the aeronautical piston engines field, which has been dormant for several decades, as interest shifted towards turboaircraft, new materials with increased performance and properties have opened new possibilities for development. Moreover, the engine’s modularity given by the cylinder unit, makes it possible to design a specific engine for a given application. In many real engineering problems the amount of design variables may be very high, characterized by several non-linearities needed to describe the behaviour of the phenomena. In this case the objective function has many local extremes, but the designer is usually interested in the global one. The stochastic and the evolutionary optimization techniques, such as the genetic algorithms method, may offer reliable solutions to the design problems, within acceptable computational time. The optimization algorithm developed here can be employed in the first phase of the preliminary project of an aeronautical piston engine design. It’s a mono-objective genetic algorithm, which, starting from the given design specifications, finds the engine propulsive system configuration which possesses minimum mass while satisfying the geometrical, structural and performance constraints. The algorithm reads the project specifications as input data, namely the maximum values of crankshaft and propeller shaft speed and the maximal pressure value in the combustion chamber. The design variables bounds, that describe the solution domain from the geometrical point of view, are introduced too. In the Matlab® Optimization environment the objective function to be minimized is defined as the sum of the masses of the engine propulsive components. Each individual that is generated by the genetic algorithm is the assembly of the flywheel, the vibration damper and so many pistons, connecting rods, cranks, as the number of the cylinders. The fitness is evaluated for each individual of the population, then the rules of the genetic operators are applied, such as reproduction, mutation, selection, crossover. In the reproduction step the elitist method is applied, in order to save the fittest individuals from a contingent mutation and recombination disruption, making it undamaged survive until the next generation. Finally, as the best individual is found, the optimal dimensions values of the components are saved to an Excel® file, in order to build a CAD-automatic-3D-model for each component of the propulsive system, having a direct pre-visualization of the final product, still in the engine’s preliminary project design phase. With the purpose of showing the performance of the algorithm and validating this optimization method, an actual engine is taken, as a case study: it’s the 1900 JTD Fiat Avio, 4 cylinders, 4T, Diesel. Many verifications are made on the mechanical components of the engine, in order to test their feasibility and to decide their survival through generations. A system of inequalities is used to describe the non-linear relations between the design variables, and is used for components checking for static and dynamic loads configurations. The design variables geometrical boundaries are taken from actual engines data and similar design cases. Among the many simulations run for algorithm testing, twelve of them have been chosen as representative of the distribution of the individuals. Then, as an example, for each simulation, the corresponding 3D models of the crankshaft and the connecting rod, have been automatically built. In spite of morphological differences among the component the mass is almost the same. The results show a significant mass reduction (almost 20% for the crankshaft) in comparison to the original configuration, and an acceptable robustness of the method have been shown. The algorithm here developed is shown to be a valid method for an aeronautical-piston-engine preliminary project design optimization. In particular the procedure is able to analyze quite a wide range of design solutions, rejecting the ones that cannot fulfill the feasibility design specifications. This optimization algorithm could increase the aeronautical-piston-engine development, speeding up the production rate and joining modern computation performances and technological awareness to the long lasting traditional design experiences.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents exact, hybrid algorithms for mixed resource Allocation and Scheduling problems; in general terms, those consist into assigning over time finite capacity resources to a set of precedence connected activities. The proposed methods have broad applicability, but are mainly motivated by applications in the field of Embedded System Design. In particular, high-performance embedded computing recently witnessed the shift from single CPU platforms with application-specific accelerators to programmable Multi Processor Systems-on-Chip (MPSoCs). Those allow higher flexibility, real time performance and low energy consumption, but the programmer must be able to effectively exploit the platform parallelism. This raises interest in the development of algorithmic techniques to be embedded in CAD tools; in particular, given a specific application and platform, the objective if to perform optimal allocation of hardware resources and to compute an execution schedule. On this regard, since embedded systems tend to run the same set of applications for their entire lifetime, off-line, exact optimization approaches are particularly appealing. Quite surprisingly, the use of exact algorithms has not been well investigated so far; this is in part motivated by the complexity of integrated allocation and scheduling, setting tough challenges for ``pure'' combinatorial methods. The use of hybrid CP/OR approaches presents the opportunity to exploit mutual advantages of different methods, while compensating for their weaknesses. In this work, we consider in first instance an Allocation and Scheduling problem over the Cell BE processor by Sony, IBM and Toshiba; we propose three different solution methods, leveraging decomposition, cut generation and heuristic guided search. Next, we face Allocation and Scheduling of so-called Conditional Task Graphs, explicitly accounting for branches with outcome not known at design time; we extend the CP scheduling framework to effectively deal with the introduced stochastic elements. Finally, we address Allocation and Scheduling with uncertain, bounded execution times, via conflict based tree search; we introduce a simple and flexible time model to take into account duration variability and provide an efficient conflict detection method. The proposed approaches achieve good results on practical size problem, thus demonstrating the use of exact approaches for system design is feasible. Furthermore, the developed techniques bring significant contributions to combinatorial optimization methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACT ONTOLOGIES AND METHODS FOR INTEROPERABILITY OF ENGINEERING ANALYSIS MODELS (EAMS) IN AN E-DESIGN ENVIRONMENT SEPTEMBER 2007 NEELIMA KANURI, B.S., BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCES PILANI INDIA M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ian Grosse Interoperability is the ability of two or more systems to exchange and reuse information efficiently. This thesis presents new techniques for interoperating engineering tools using ontologies as the basis for representing, visualizing, reasoning about, and securely exchanging abstract engineering knowledge between software systems. The specific engineering domain that is the primary focus of this report is the modeling knowledge associated with the development of engineering analysis models (EAMs). This abstract modeling knowledge has been used to support integration of analysis and optimization tools in iSIGHT FD , a commercial engineering environment. ANSYS , a commercial FEA tool, has been wrapped as an analysis service available inside of iSIGHT-FD. Engineering analysis modeling (EAM) ontology has been developed and instantiated to form a knowledge base for representing analysis modeling knowledge. The instances of the knowledge base are the analysis models of real world applications. To illustrate how abstract modeling knowledge can be exploited for useful purposes, a cantilever I-Beam design optimization problem has been used as a test bed proof-of-concept application. Two distinct finite element models of the I-beam are available to analyze a given beam design- a beam-element finite element model with potentially lower accuracy but significantly reduced computational costs and a high fidelity, high cost, shell-element finite element model. The goal is to obtain an optimized I-beam design at minimum computational expense. An intelligent KB tool was developed and implemented in FiPER . This tool reasons about the modeling knowledge to intelligently shift between the beam and the shell element models during an optimization process to select the best analysis model for a given optimization design state. In addition to improved interoperability and design optimization, methods are developed and presented that demonstrate the ability to operate on ontological knowledge bases to perform important engineering tasks. One such method is the automatic technical report generation method which converts the modeling knowledge associated with an analysis model to a flat technical report. The second method is a secure knowledge sharing method which allocates permissions to portions of knowledge to control knowledge access and sharing. Both the methods acting together enable recipient specific fine grain controlled knowledge viewing and sharing in an engineering workflow integration environment, such as iSIGHT-FD. These methods together play a very efficient role in reducing the large scale inefficiencies existing in current product design and development cycles due to poor knowledge sharing and reuse between people and software engineering tools. This work is a significant advance in both understanding and application of integration of knowledge in a distributed engineering design framework.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this thesis is model some processes from the nature as evolution and co-evolution, and proposing some techniques that can ensure that these learning process really happens and useful to solve some complex problems as Go game. The Go game is ancient and very complex game with simple rules which still is a challenge for the Artificial Intelligence. This dissertation cover some approaches that were applied to solve this problem, proposing solve this problem using competitive and cooperative co-evolutionary learning methods and other techniques proposed by the author. To study, implement and prove these methods were used some neural networks structures, a framework free available and coded many programs. The techniques proposed were coded by the author, performed many experiments to find the best configuration to ensure that co-evolution is progressing and discussed the results. Using co-evolutionary learning processes can be observed some pathologies which could impact co-evolution progress. In this dissertation is introduced some techniques to solve pathologies as loss of gradients, cycling dynamics and forgetting. According to some authors, one solution to solve these co-evolution pathologies is introduce more diversity in populations that are evolving. In this thesis is proposed some techniques to introduce more diversity and some diversity measurements for neural networks structures to monitor diversity during co-evolution. The genotype diversity evolved were analyzed in terms of its impact to global fitness of the strategies evolved and their generalization. Additionally, it was introduced a memory mechanism in the network neural structures to reinforce some strategies in the genes of the neurons evolved with the intention that some good strategies learned are not forgotten. In this dissertation is presented some works from other authors in which cooperative and competitive co-evolution has been applied. The Go board size used in this thesis was 9x9, but can be easily escalated to more bigger boards.The author believe that programs coded and techniques introduced in this dissertation can be used for other domains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La influencia de la aerodinámica en el diseño de los trenes de alta velocidad, unida a la necesidad de resolver nuevos problemas surgidos con el aumento de la velocidad de circulación y la reducción de peso del vehículo, hace evidente el interés de plantear un estudio de optimización que aborde tales puntos. En este contexto, se presenta en esta tesis la optimización aerodinámica del testero de un tren de alta velocidad, llevada a cabo mediante el uso de métodos de optimización avanzados. Entre estos métodos, se ha elegido aquí a los algoritmos genéticos y al método adjunto como las herramientas para llevar a cabo dicha optimización. La base conceptual, las características y la implementación de los mismos se detalla a lo largo de la tesis, permitiendo entender los motivos de su elección, y las consecuencias, en términos de ventajas y desventajas que cada uno de ellos implican. El uso de los algorimos genéticos implica a su vez la necesidad de una parametrización geométrica de los candidatos a óptimo y la generación de un modelo aproximado que complementa al método de optimización. Estos puntos se describen de modo particular en el primer bloque de la tesis, enfocada a la metodología seguida en este estudio. El segundo bloque se centra en la aplicación de los métodos a fin de optimizar el comportamiento aerodinámico del tren en distintos escenarios. Estos escenarios engloban los casos más comunes y también algunos de los más exigentes a los que hace frente un tren de alta velocidad: circulación en campo abierto con viento frontal o viento lateral, y entrada en túnel. Considerando el caso de viento frontal en campo abierto, los dos métodos han sido aplicados, permitiendo una comparación de las diferentes metodologías, así como el coste computacional asociado a cada uno, y la minimización de la resistencia aerodinámica conseguida en esa optimización. La posibilidad de evitar parametrizar la geometría y, por tanto, reducir el coste computacional del proceso de optimización es la característica más significativa de los métodos adjuntos, mientras que en el caso de los algoritmos genéticos se destaca la simplicidad y capacidad de encontrar un óptimo global en un espacio de diseño multi-modal o de resolver problemas multi-objetivo. El caso de viento lateral en campo abierto considera nuevamente los dos métoxi dos de optimización anteriores. La parametrización se ha simplificado en este estudio, lo que notablemente reduce el coste numérico de todo el estudio de optimización, a la vez que aún recoge las características geométricas más relevantes en un tren de alta velocidad. Este análisis ha permitido identificar y cuantificar la influencia de cada uno de los parámetros geométricos incluídos en la parametrización, y se ha observado que el diseño de la arista superior a barlovento es fundamental, siendo su influencia mayor que la longitud del testero o que la sección frontal del mismo. Finalmente, se ha considerado un escenario más a fin de validar estos métodos y su capacidad de encontrar un óptimo global. La entrada de un tren de alta velocidad en un túnel es uno de los casos más exigentes para un tren por el pico de sobrepresión generado, el cual afecta a la confortabilidad del pasajero, así como a la estabilidad del vehículo y al entorno próximo a la salida del túnel. Además de este problema, otro objetivo a minimizar es la resistencia aerodinámica, notablemente superior al caso de campo abierto. Este problema se resuelve usando algoritmos genéticos. Dicho método permite obtener un frente de Pareto donde se incluyen el conjunto de óptimos que minimizan ambos objetivos. ABSTRACT Aerodynamic design of trains influences several aspects of high-speed trains performance in a very significant level. In this situation, considering also that new aerodynamic problems have arisen due to the increase of the cruise speed and lightness of the vehicle, it is evident the necessity of proposing an optimization study concerning the train aerodynamics. Thus, the aerodynamic optimization of the nose shape of a high-speed train is presented in this thesis. This optimization is based on advanced optimization methods. Among these methods, genetic algorithms and the adjoint method have been selected. A theoretical description of their bases, the characteristics and the implementation of each method is detailed in this thesis. This introduction permits understanding the causes of their selection, and the advantages and drawbacks of their application. The genetic algorithms requirethe geometrical parameterization of any optimal candidate and the generation of a metamodel or surrogate model that complete the optimization process. These points are addressed with a special attention in the first block of the thesis, focused on the methodology considered in this study. The second block is referred to the use of these methods with the purpose of optimizing the aerodynamic performance of a high-speed train in several scenarios. These scenarios englobe the most representative operating conditions of high-speed trains, and also some of the most exigent train aerodynamic problems: front wind and cross-wind situations in open air, and the entrance of a high-speed train in a tunnel. The genetic algorithms and the adjoint method have been applied in the minimization of the aerodynamic drag on the train with front wind in open air. The comparison of these methods allows to evaluate the methdology and computational cost of each one, as well as the resulting minimization of the aerodynamic drag. Simplicity and robustness, the straightforward realization of a multi-objective optimization, and the capability of searching a global optimum are the main attributes of genetic algorithm. However, the requirement of geometrically parameterize any optimal candidate is a significant drawback that is avoided with the use of the adjoint method. This independence of the number of design variables leads to a relevant reduction of the pre-processing and computational cost. Considering the cross-wind stability, both methods are used again for the minimization of the side force. In this case, a simplification of the geometric parameterization of the train nose is adopted, what dramatically reduces the computational cost of the optimization process. Nevertheless, some of the most important geometrical characteristics are still described with this simplified parameterization. This analysis identifies and quantifies the influence of each design variable on the side force on the train. It is observed that the A-pillar roundness is the most demanding design parameter, with a more important effect than the nose length or the train cross-section area. Finally, a third scenario is considered for the validation of these methods in the aerodynamic optimization of a high-speed train. The entrance of a train in a tunnel is one of the most exigent train aerodynamic problems. The aerodynamic consequences of high-speed trains running in a tunnel are basically resumed in two correlated phenomena, the generation of pressure waves and an increase in aerodynamic drag. This multi-objective optimization problem is solved with genetic algorithms. The result is a Pareto front where a set of optimal solutions that minimize both objectives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El sistema de energía eólica-diesel híbrido tiene un gran potencial en la prestación de suministro de energía a comunidades remotas. En comparación con los sistemas tradicionales de diesel, las plantas de energía híbridas ofrecen grandes ventajas tales como el suministro de capacidad de energía extra para "microgrids", reducción de los contaminantes y emisiones de gases de efecto invernadero, y la cobertura del riesgo de aumento inesperado del precio del combustible. El principal objetivo de la presente tesis es proporcionar nuevos conocimientos para la evaluación y optimización de los sistemas de energía híbrido eólico-diesel considerando las incertidumbres. Dado que la energía eólica es una variable estocástica, ésta no puede ser controlada ni predecirse con exactitud. La naturaleza incierta del viento como fuente de energía produce serios problemas tanto para la operación como para la evaluación del valor del sistema de energía eólica-diesel híbrido. Por un lado, la regulación de la potencia inyectada desde las turbinas de viento es una difícil tarea cuando opera el sistema híbrido. Por otro lado, el bene.cio económico de un sistema eólico-diesel híbrido se logra directamente a través de la energía entregada a la red de alimentación de la energía eólica. Consecuentemente, la incertidumbre de los recursos eólicos incrementa la dificultad de estimar los beneficios globales en la etapa de planificación. La principal preocupación del modelo tradicional determinista es no tener en cuenta la incertidumbre futura a la hora de tomar la decisión de operación. Con lo cual, no se prevé las acciones operativas flexibles en respuesta a los escenarios futuros. El análisis del rendimiento y simulación por ordenador en el Proyecto Eólico San Cristóbal demuestra que la incertidumbre sobre la energía eólica, las estrategias de control, almacenamiento de energía, y la curva de potencia de aerogeneradores tienen un impacto significativo sobre el rendimiento del sistema. En la presente tesis, se analiza la relación entre la teoría de valoración de opciones y el proceso de toma de decisiones. La opción real se desarrolla con un modelo y se presenta a través de ejemplos prácticos para evaluar el valor de los sistemas de energía eólica-diesel híbridos. Los resultados muestran que las opciones operacionales pueden aportar un valor adicional para el sistema de energía híbrida, cuando esta flexibilidad operativa se utiliza correctamente. Este marco se puede aplicar en la optimización de la operación a corto plazo teniendo en cuenta la naturaleza dependiente de la trayectoria de la política óptima de despacho, dadas las plausibles futuras realizaciones de la producción de energía eólica. En comparación con los métodos de valoración y optimización existentes, el resultado del caso de estudio numérico muestra que la política de operación resultante del modelo de optimización propuesto presenta una notable actuación en la reducción del con- sumo total de combustible del sistema eólico-diesel. Con el .n de tomar decisiones óptimas, los operadores de plantas de energía y los gestores de éstas no deben centrarse sólo en el resultado directo de cada acción operativa, tampoco deberían tomar decisiones deterministas. La forma correcta es gestionar dinámicamente el sistema de energía teniendo en cuenta el valor futuro condicionado en cada opción frente a la incertidumbre. ABSTRACT Hybrid wind-diesel power systems have a great potential in providing energy supply to remote communities. Compared with the traditional diesel systems, hybrid power plants are providing many advantages such as providing extra energy capacity to the micro-grid, reducing pollution and greenhouse-gas emissions, and hedging the risk of unexpected fuel price increases. This dissertation aims at providing novel insights for assessing and optimizing hybrid wind-diesel power systems considering the related uncertainties. Since wind power can neither be controlled nor accurately predicted, the energy harvested from a wind turbine may be considered a stochastic variable. This uncertain nature of wind energy source results in serious problems for both the operation and value assessment of the hybrid wind-diesel power system. On the one hand, regulating the uncertain power injected from wind turbines is a difficult task when operating the hybrid system. On the other hand, the economic profit of a hybrid wind-diesel system is achieved directly through the energy delivered to the power grid from the wind energy. Therefore, the uncertainty of wind resources has increased the difficulty in estimating the total benefits in the planning stage. The main concern of the traditional deterministic model is that it does not consider the future uncertainty when making the dispatch decision. Thus, it does not provide flexible operational actions in response to the uncertain future scenarios. Performance analysis and computer simulation on the San Cristobal Wind Project demonstrate that the wind power uncertainty, control strategies, energy storage, and the wind turbine power curve have a significant impact on the performance of the system. In this dissertation, the relationship between option pricing theory and decision making process is discussed. A real option model is developed and presented through practical examples for assessing the value of hybrid wind-diesel power systems. Results show that operational options can provide additional value to the hybrid power system when this operational flexibility is correctly utilized. This framework can be applied in optimizing short term dispatch decisions considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. Comparing with the existing valuation and optimization methods, result from numerical example shows that the dispatch policy resulting from the proposed optimization model exhibits a remarkable performance in minimizing the total fuel consumption of the wind-diesel system. In order to make optimal decisions, power plant operators and managers should not just focus on the direct outcome of each operational action; neither should they make deterministic decisions. The correct way is to dynamically manage the power system by taking into consideration the conditional future value in each option in response to the uncertainty.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El principal objetivo de esta tesis es el desarrollo de métodos de síntesis de diagramas de radiación de agrupaciones de antenas, en donde se realiza una caracterización electromagnética rigurosa de los elementos radiantes y de los acoplos mutuos existentes. Esta caracterización no se realiza habitualmente en la gran mayoría de métodos de síntesis encontrados en la literatura, debido fundamentalmente a dos razones. Por un lado, se considera que el diagrama de radiación de un array de antenas se puede aproximar con el factor de array que únicamente tiene en cuenta la posición de los elementos y las excitaciones aplicadas a los mismos. Sin embargo, como se mostrará en esta tesis, en múltiples ocasiones un riguroso análisis de los elementos radiantes y del acoplo mutuo entre ellos es importante ya que los resultados obtenidos pueden ser notablemente diferentes. Por otro lado, no es sencillo combinar un método de análisis electromagnético con un proceso de síntesis de diagramas de radiación. Los métodos de análisis de agrupaciones de antenas suelen ser costosos computacionalmente, ya que son estructuras grandes en términos de longitudes de onda. Generalmente, un diseño de un problema electromagnético suele comprender varios análisis de la estructura, dependiendo de las variaciones de las características, lo que hace este proceso muy costoso. Dos métodos se utilizan en esta tesis para el análisis de los arrays acoplados. Ambos están basados en el método de los elementos finitos, la descomposición de dominio y el análisis modal para analizar la estructura radiante y han sido desarrollados en el grupo de investigación donde se engloba esta tesis. El primero de ellos es una técnica de análisis de arrays finitos basado en la aproximación de array infinito. Su uso es indicado para arrays planos de grandes dimensiones con elementos equiespaciados. El segundo caracteriza el array y el acoplo mutuo entre elementos a partir de una expansión en modos esféricos del campo radiado por cada uno de los elementos. Este método calcula los acoplos entre los diferentes elementos del array usando las propiedades de traslación y rotación de los modos esféricos. Es capaz de analizar agrupaciones de elementos distribuidos de forma arbitraria. Ambas técnicas utilizan una formulación matricial que caracteriza de forma rigurosa el campo radiado por el array. Esto las hace muy apropiadas para su posterior uso en una herramienta de diseño, como los métodos de síntesis desarrollados en esta tesis. Los resultados obtenidos por estas técnicas de síntesis, que incluyen métodos rigurosos de análisis, son consecuentemente más precisos. La síntesis de arrays consiste en modificar uno o varios parámetros de las agrupaciones de antenas buscando unas determinadas especificaciones de las características de radiación. Los parámetros utilizados como variables de optimización pueden ser varios. Los más utilizados son las excitaciones aplicadas a los elementos, pero también es posible modificar otros parámetros de diseño como son las posiciones de los elementos o las rotaciones de estos. Los objetivos de las síntesis pueden ser dirigir el haz o haces en una determinada dirección o conformar el haz con formas arbitrarias. Además, es posible minimizar el nivel de los lóbulos secundarios o del rizado en las regiones deseadas, imponer nulos que evitan posibles interferencias o reducir el nivel de la componente contrapolar. El método para el análisis de arrays finitos basado en la aproximación de array infinito considera un array finito como un array infinito con un número finito de elementos excitados. Los elementos no excitados están físicamente presentes y pueden presentar tres diferentes terminaciones, corto-circuito, circuito abierto y adaptados. Cada una de estas terminaciones simulará mejor el entorno real en el que el array se encuentre. Este método de análisis se integra en la tesis con dos métodos diferentes de síntesis de diagramas de radiación. En el primero de ellos se presenta un método basado en programación lineal en donde es posible dirigir el haz o haces, en la dirección deseada, además de ejercer un control sobre los lóbulos secundarios o imponer nulos. Este método es muy eficiente y obtiene soluciones óptimas. El mismo método de análisis es también aplicado a un método de conformación de haz, en donde un problema originalmente no convexo (y de difícil solución) es transformado en un problema convexo imponiendo restricciones de simetría, resolviendo de este modo eficientemente un problema complejo. Con este método es posible diseñar diagramas de radiación con haces de forma arbitraria, ejerciendo un control en el rizado del lóbulo principal, así como en el nivel de los lóbulos secundarios. El método de análisis de arrays basado en la expansión en modos esféricos se integra en la tesis con tres técnicas de síntesis de diagramas de radiación. Se propone inicialmente una síntesis de conformación del haz basado en el método de la recuperación de fase resuelta de forma iterativa mediante métodos convexos, en donde relajando las restricciones del problema original se consiguen unas soluciones cercanas a las óptimas de manera eficiente. Dos métodos de síntesis se han propuesto, donde las variables de optimización son las posiciones y las rotaciones de los elementos respectivamente. Se define una función de coste basada en la intensidad de radiación, la cual es minimizada de forma iterativa con el método del gradiente. Ambos métodos reducen el nivel de los lóbulos secundarios minimizando una función de coste. El gradiente de la función de coste es obtenido en términos de la variable de optimización en cada método. Esta función de coste está formada por la expresión rigurosa de la intensidad de radiación y por una función de peso definida por el usuario para imponer prioridades sobre las diferentes regiones de radiación, si así se desea. Por último, se presenta un método en el cual, mediante técnicas de programación entera, se buscan las fases discretas que generan un diagrama de radiación lo más cercano posible al deseado. Con este método se obtienen diseños que minimizan el coste de fabricación. En cada uno de las diferentes técnicas propuestas en la tesis, se presentan resultados con elementos reales que muestran las capacidades y posibilidades que los métodos ofrecen. Se comparan los resultados con otros métodos disponibles en la literatura. Se muestra la importancia de tener en cuenta los diagramas de los elementos reales y los acoplos mutuos en el proceso de síntesis y se comparan los resultados obtenidos con herramientas de software comerciales. ABSTRACT The main objective of this thesis is the development of optimization methods for the radiation pattern synthesis of array antennas in which a rigorous electromagnetic characterization of the radiators and the mutual coupling between them is performed. The electromagnetic characterization is usually overlooked in most of the available synthesis methods in the literature, this is mainly due to two reasons. On the one hand, it is argued that the radiation pattern of an array is mainly influenced by the array factor and that the mutual coupling plays a minor role. As it is shown in this thesis, the mutual coupling and the rigorous characterization of the array antenna influences significantly in the array performance and its computation leads to differences in the results obtained. On the other hand, it is difficult to introduce an analysis procedure into a synthesis technique. The analysis of array antennas is generally expensive computationally as the structure to analyze is large in terms of wavelengths. A synthesis method requires to carry out a large number of analysis, this makes the synthesis problem very expensive computationally or intractable in some cases. Two methods have been used in this thesis for the analysis of coupled antenna arrays, both of them have been developed in the research group in which this thesis is involved. They are based on the finite element method (FEM), the domain decomposition and the modal analysis. The first one obtains a finite array characterization with the results obtained from the infinite array approach. It is specially indicated for the analysis of large arrays with equispaced elements. The second one characterizes the array elements and the mutual coupling between them with a spherical wave expansion of the radiated field by each element. The mutual coupling is computed using the properties of translation and rotation of spherical waves. This method is able to analyze arrays with elements placed on an arbitrary distribution. Both techniques provide a matrix formulation that makes them very suitable for being integrated in synthesis techniques, the results obtained from these synthesis methods will be very accurate. The array synthesis stands for the modification of one or several array parameters looking for some desired specifications of the radiation pattern. The array parameters used as optimization variables are usually the excitation weights applied to the array elements, but some other array characteristics can be used as well, such as the array elements positions or rotations. The desired specifications may be to steer the beam towards any specific direction or to generate shaped beams with arbitrary geometry. Further characteristics can be handled as well, such as minimize the side lobe level in some other radiating regions, to minimize the ripple of the shaped beam, to take control over the cross-polar component or to impose nulls on the radiation pattern to avoid possible interferences from specific directions. The analysis method based on the infinite array approach considers an infinite array with a finite number of excited elements. The infinite non-excited elements are physically present and may have three different terminations, short-circuit, open circuit and match terminated. Each of this terminations is a better simulation for the real environment of the array. This method is used in this thesis for the development of two synthesis methods. In the first one, a multi-objective radiation pattern synthesis is presented, in which it is possible to steer the beam or beams in desired directions, minimizing the side lobe level and with the possibility of imposing nulls in the radiation pattern. This method is very efficient and obtains optimal solutions as it is based on convex programming. The same analysis method is used in a shaped beam technique in which an originally non-convex problem is transformed into a convex one applying symmetry restrictions, thus solving a complex problem in an efficient way. This method allows the synthesis of shaped beam radiation patterns controlling the ripple in the mainlobe and the side lobe level. The analysis method based on the spherical wave expansion is applied for different synthesis techniques of the radiation pattern of coupled arrays. A shaped beam synthesis is presented, in which a convex formulation is proposed based on the phase retrieval method. In this technique, an originally non-convex problem is solved using a relaxation and solving a convex problems iteratively. Two methods are proposed based on the gradient method. A cost function is defined involving the radiation intensity of the coupled array and a weighting function that provides more degrees of freedom to the designer. The gradient of the cost function is computed with respect to the positions in one of them and the rotations of the elements in the second one. The elements are moved or rotated iteratively following the results of the gradient. A highly non-convex problem is solved very efficiently, obtaining very good results that are dependent on the starting point. Finally, an optimization method is presented where discrete digital phases are synthesized providing a radiation pattern as close as possible to the desired one. The problem is solved using linear integer programming procedures obtaining array designs that greatly reduce the fabrication costs. Results are provided for every method showing the capabilities that the above mentioned methods offer. The results obtained are compared with available methods in the literature. The importance of introducing a rigorous analysis into the synthesis method is emphasized and the results obtained are compared with a commercial software, showing good agreement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerical optimization is a technique where a computer is used to explore design parameter combinations to find extremes in performance factors. In multi-objective optimization several performance factors can be optimized simultaneously. The solution to multi-objective optimization problems is not a single design, but a family of optimized designs referred to as the Pareto frontier. The Pareto frontier is a trade-off curve in the objective function space composed of solutions where performance in one objective function is traded for performance in others. A Multi-Objective Hybridized Optimizer (MOHO) was created for the purpose of solving multi-objective optimization problems by utilizing a set of constituent optimization algorithms. MOHO tracks the progress of the Pareto frontier approximation development and automatically switches amongst those constituent evolutionary optimization algorithms to speed the formation of an accurate Pareto frontier approximation. Aerodynamic shape optimization is one of the oldest applications of numerical optimization. MOHO was used to perform shape optimization on a 0.5-inch ballistic penetrator traveling at Mach number 2.5. Two objectives were simultaneously optimized: minimize aerodynamic drag and maximize penetrator volume. This problem was solved twice. The first time the problem was solved by using Modified Newton Impact Theory (MNIT) to determine the pressure drag on the penetrator. In the second solution, a Parabolized Navier-Stokes (PNS) solver that includes viscosity was used to evaluate the drag on the penetrator. The studies show the difference in the optimized penetrator shapes when viscosity is absent and present in the optimization. In modern optimization problems, objective function evaluations may require many hours on a computer cluster to perform these types of analysis. One solution is to create a response surface that models the behavior of the objective function. Once enough data about the behavior of the objective function has been collected, a response surface can be used to represent the actual objective function in the optimization process. The Hybrid Self-Organizing Response Surface Method (HYBSORSM) algorithm was developed and used to make response surfaces of objective functions. HYBSORSM was evaluated using a suite of 295 non-linear functions. These functions involve from 2 to 100 variables demonstrating robustness and accuracy of HYBSORSM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les réseaux de capteurs sont formés d’un ensemble de dispositifs capables de prendre individuellement des mesures d’un environnement particulier et d’échanger de l’information afin d’obtenir une représentation de haut niveau sur les activités en cours dans la zone d’intérêt. Une telle détection distribuée, avec de nombreux appareils situés à proximité des phénomènes d’intérêt, est pertinente dans des domaines tels que la surveillance, l’agriculture, l’observation environnementale, la surveillance industrielle, etc. Nous proposons dans cette thèse plusieurs approches pour effectuer l’optimisation des opérations spatio-temporelles de ces dispositifs, en déterminant où les placer dans l’environnement et comment les contrôler au fil du temps afin de détecter les cibles mobiles d’intérêt. La première nouveauté consiste en un modèle de détection réaliste représentant la couverture d’un réseau de capteurs dans son environnement. Nous proposons pour cela un modèle 3D probabiliste de la capacité de détection d’un capteur sur ses abords. Ce modèle inègre également de l’information sur l’environnement grâce à l’évaluation de la visibilité selon le champ de vision. À partir de ce modèle de détection, l’optimisation spatiale est effectuée par la recherche du meilleur emplacement et l’orientation de chaque capteur du réseau. Pour ce faire, nous proposons un nouvel algorithme basé sur la descente du gradient qui a été favorablement comparée avec d’autres méthodes génériques d’optimisation «boites noires» sous l’aspect de la couverture du terrain, tout en étant plus efficace en terme de calculs. Une fois que les capteurs placés dans l’environnement, l’optimisation temporelle consiste à bien couvrir un groupe de cibles mobiles dans l’environnement. D’abord, on effectue la prédiction de la position future des cibles mobiles détectées par les capteurs. La prédiction se fait soit à l’aide de l’historique des autres cibles qui ont traversé le même environnement (prédiction à long terme), ou seulement en utilisant les déplacements précédents de la même cible (prédiction à court terme). Nous proposons de nouveaux algorithmes dans chaque catégorie qui performent mieux ou produits des résultats comparables par rapport aux méthodes existantes. Une fois que les futurs emplacements de cibles sont prédits, les paramètres des capteurs sont optimisés afin que les cibles soient correctement couvertes pendant un certain temps, selon les prédictions. À cet effet, nous proposons une méthode heuristique pour faire un contrôle de capteurs, qui se base sur les prévisions probabilistes de trajectoire des cibles et également sur la couverture probabiliste des capteurs des cibles. Et pour terminer, les méthodes d’optimisation spatiales et temporelles proposées ont été intégrées et appliquées avec succès, ce qui démontre une approche complète et efficace pour l’optimisation spatio-temporelle des réseaux de capteurs.