940 resultados para Evolution Management
Resumo:
There is a growing need for measures assessing technological changes in systemic contexts as business ecosystems replace standalone products. In these ecosystem contexts, organizations are required to manage their innovation processes in increasingly networked and complex environments. In this paper, we introduce the technology and ecosystem clockspeed measures that can be used to assess the temporal nature of technological changes in a business ecosystem. We analyze systemic changes in the personal computer (PC) ecosystem, explicitly focusing on subindustries central to the delivery of PC gaming value to the end user. Our results show that the time-based intensity of technological competition in intertwined subindustries of a business ecosystem may follow various trajectories during the evolution of the ecosystem. Hence, the technology and ecosystem clockspeed measures are able to pinpoint alternating dynamics in technological changes among the subindustries in the business ecosystem. We subsequently discuss organizational considerations and theoretical implications of the proposed measures.
Resumo:
To remain competitive, many agricultural systems are now being run along business lines. Systems methodologies are being incorporated, and here evolutionary computation is a valuable tool for identifying more profitable or sustainable solutions. However, agricultural models typically pose some of the more challenging problems for optimisation. This chapter outlines these problems, and then presents a series of three case studies demonstrating how they can be overcome in practice. Firstly, increasingly complex models of Australian livestock enterprises show that evolutionary computation is the only viable optimisation method for these large and difficult problems. On-going research is taking a notably efficient and robust variant, differential evolution, out into real-world systems. Next, models of cropping systems in Australia demonstrate the challenge of dealing with competing objectives, namely maximising farm profit whilst minimising resource degradation. Pareto methods are used to illustrate this trade-off, and these results have proved to be most useful for farm managers in this industry. Finally, land-use planning in the Netherlands demonstrates the size and spatial complexity of real-world problems. Here, GIS-based optimisation techniques are integrated with Pareto methods, producing better solutions which were acceptable to the competing organizations. These three studies all show that evolutionary computation remains the only feasible method for the optimisation of large, complex agricultural problems. An extra benefit is that the resultant population of candidate solutions illustrates trade-offs, and this leads to more informed discussions and better education of the industry decision-makers.
Resumo:
Rabbit Haemorrhagic Disease Virus (RHDV) was introduced to Australia in 1995 for the control of wild rabbits. Initial outbreaks greatly reduced rabbit numbers and the virus has continued to control rabbits to varying degrees in different parts of Australia. However, recent field evidence suggests that the virus may be becoming less effective in those areas that have previously experienced repeated epizootics causing high mortality. There are also reports of rabbits returning to pre-1995 density levels, Virus and host can be expected to co-evolve. The host will develop resistance to the virus with the virus subsequently changing to overcome that resistance. It has been 12 years since the release of RHDV and it is an opportune time to examine where the dynamic currently stands between RHDV and rabbits. Laboratory challenge tests have indicated that resistance to RHDV has developed to different degrees in populations throughout Australia. In one population a low dose (1:25 dilution) of Czech strain RHDV failed to infect a single susceptible rabbit, yet infected a low to high (up to 73%) percentage across other populations tested. Different selection pressures are present in these populations and will be driving the level of resistance being seen. The mechanisms and genetics behind the development of resistance are also important as the on-going use of RHDV as a control tool in the management of rabbits relies on our understanding of factors influencing the efficacy of the virus. Understanding how resistance has developed may provide clues on how best to use the virus to circumvent these mechanisms. Similarly, it will help in managing populations that have yet to develop high levels of resistance.
Resumo:
The incorporation of sown pastures as short-term rotations into the cropping systems of northern Australia has been slow. The inherent chemical fertility and physical stability of the predominant vertisol soils across the region enabled farmers to grow crops for decades without nitrogen fertiliser, and precluded the evolution of a crop–pasture rotation culture. However, as less fertile and less physically stable soils were cropped for extended periods, farmers began to use contemporary farming and sown pasture technologies to rebuild and maintain their soils. This has typically involved sowing long-term grass and grass–legume pastures on the more marginal cropping soils of the region. In partnership with the catchment management authority, the Queensland Murray–Darling Committee (QMDC) and Landcare, a pasture extension process using the LeyGrain™ package was implemented in 2006 within two Grain & Graze projects in the Maranoa-Balonne and Border Rivers catchments in southern inland Queensland. The specific objectives were to increase the area sown to high quality pasture and to gain production and environmental benefits (particularly groundcover) through improving the skills of producers in pasture species selection, their understanding and management of risk during pasture establishment, and in managing pastures and the feed base better. The catalyst for increasing pasture sowings was a QMDC subsidy scheme for increasing groundcover on old cropping land. In recognising a need to enhance pasture knowledge and skills to implement this scheme, the QMDC and Landcare producer groups sought the involvement of, and set specific targets for, the LeyGrain workshop process. This is a highly interactive action learning process that built on the existing knowledge and skills of the producers. Thirty-four workshops were held with more than 200 producers in 26 existing groups and with private agronomists. An evaluation process assessed the impact of the workshops on the learning and skill development by participants, their commitment to practice change, and their future intent to sow pastures. The results across both project catchments were highly correlated. There was strong agreement by producers (>90%) that the workshops had improved knowledge and skills regarding the adaptation of pasture species to soils and climates, enabling a better selection at the paddock level. Additional strong impacts were in changing the attitudes of producers to all aspects of pasture establishment, and the relative species composition of mixtures. Producers made a strong commitment to practice change, particularly in managing pasture as a specialist crop at establishment to minimise risk, and in the better selection and management of improved pasture species (particularly legumes and the use of fertiliser). Producers have made a commitment to increase pasture sowings by 80% in the next 5 years, with fourteen producers in one group alone having committed to sow an additional 4893 ha of pasture in 2007–08 under the QMDC subsidy scheme. The success of the project was attributed to the partnership between QMDC and Landcare groups who set individual workshop targets with LeyGrain presenters, the interactive engagement processes within the workshops themselves, and the follow-up provided by the LeyGrain team for on-farm activities.
Resumo:
The introduction of glyphosate tolerant cotton has significantly improved the flexibility and management of a number of problem weeds in cotton systems. However, reliance on glyphosate poses risks to the industry in term of glyphosate resistance and species shift. The aims of this project were to identify these risks, and determine strategies to prevent and mitigate the potential for resistance evolution. Field surveys identified fleabane as the most common weed now in both irrigated and dryland system. Sowthistle has also increased in prevalence, and bladder ketmia and peachvine remained common. The continued reliance on glyphosate has favoured small seeded, and glyphosate tolerant species. Fleabane is both of these, with populations confirmed resistant in grains systems in Queensland and NSW. When species were assessed for their resistance risk, fleabane, liverseed grass, feathertop Rhodes grass, sowthistle and barnyard grass were determined to have high risk ratings. Management practices were also determined to rely heavily on glyphosate and therefore be high risk in summer fallows, and dryland glyphosate tolerant and conventional cotton. Situations were these high risk species are present in high risk cropping phases need particular attention. The confirmation of a glyphosate resistance barnyard grass population in a dryland glyphosate tolerant cotton system means resistance is now a reality for the cotton industry. However, experiments have shown that resistant populations can be managed with other herbicide options currently available. However, the options for fleabane management in cotton are still limited. Although some selective residual herbicides are showing promise, the majority of fleabane control tactics can only be used in other phases of the cotton rotation. An online glyphosate resistance tool has been developed. This tool allows growers to assess their individual glyphosate resistance risks, and how they can adjust their practices to reduce their risks. It also provides researchers with current information on weed species present and practices used across the industry. This tool will be extremely useful in tailoring future research and extension efforts. Simulations from the expanded glyphosate resistance model have shown that glyphosate resistance can be prevented and managed in glyphosate-tolerant cotton farming systems. However, for strategies to be successful, some effort is required. Simulations have shown the importance of controlling survivors of glyphosate applications, using effective glyphosate alternatives in fallows, and combining several effective glyphosate alternatives in crop, and these are the key to the prevention and management of glyphosate resistance.
Resumo:
BACKGROUND Control of pests in stored grain and the evolution of resistance to pesticides are serious problems worldwide. A stochastic individual-based two-locus model was used to investigate the impact of two important issues, the consistency of pesticide dosage through the storage facility and the immigration rate of the adult pest, on overall population control and avoidance of evolution of resistance to the fumigant phosphine in an important pest of stored grain, the lesser grain borer. RESULTS A very consistent dosage maintained good control for all immigration rates, while an inconsistent dosage failed to maintain control in all cases. At intermediate dosage consistency, immigration rate became a critical factor in whether control was maintained or resistance emerged. CONCLUSION Achieving a consistent fumigant dosage is a key factor in avoiding evolution of resistance to phosphine and maintaining control of populations of stored-grain pests; when the dosage achieved is very inconsistent, there is likely to be a problem regardless of immigration rate. © 2012 Society of Chemical Industry
Resumo:
The research field of Business Process Management (BPM) has gradually developed as a discipline situated within the computer, management and information systems sciences. Its evolution has been shaped by its own conference series, the BPM conference. Still, as with any other academic discipline, debates accrue and persist, which target the identity as well as the quality and maturity of the BPM field. In this paper, we contribute to the debate on the identity and progress of the BPM conference research community through an analysis of the BPM conference proceedings. We develop an understanding of signs of progress of research presented at this conference, where, how, and why papers in this conference have had an impact, and the most appropriate formats for disseminating influential research in this conference. Based on our findings from this analysis, we provide conclusions about the state of the conference series and develop a set of recommendations to further develop the conference community in terms of research maturity, methodological advance, quality, impact, and progression.
Resumo:
Glyphosate resistance is a rapidly developing threat to profitability in Australian cotton farming. Resistance causes an immediate reduction in the effectiveness of in-crop weed control in glyphosate-resistant transgenic cotton and summer fallows. Although strategies for delaying glyphosate resistance and those for managing resistant populations are qualitatively similar, the longer resistance can be delayed, the longer cotton growers will have choice over which tactics to apply and when to apply them. Effective strategies to avoid, delay, and manage resistance are thus of substantial value. We used a model of glyphosate resistance dynamics to perform simulations of resistance evolution in Sonchus oleraceus (common sowthistle) and Echinochloa colona (awnless barnyard grass) under a range of resistance prevention, delaying, and management strategies. From these simulations, we identified several elements that could contribute to effective glyphosate resistance prevention and management strategies. (i) Controlling glyphosate survivors is the most robust approach to delaying or preventing resistance. High-efficacy, high-frequency survivor control almost doubled the useful lifespan of glyphosate from 13 to 25 years even with glyphosate alone used in summer fallows. (ii) Two non-glyphosate tactics in-crop plus two in-summer fallows is the minimum intervention required for long-term delays in resistance evolution. (iii) Pre-emergence herbicides are important, but should be backed up with non-glyphosate knockdowns and strategic tillage; replacing a late-season, pre-emergence herbicide with inter-row tillage was predicted to delay glyphosate resistance by 4 years in awnless barnyard grass. (iv) Weed species' ecological characteristics, particularly seed bank dynamics, have an impact on the effectiveness of resistance strategies; S. oleraceus, because of its propensity to emerge year-round, was less exposed to selection with glyphosate than E. colona, resulting in an extra 5 years of glyphosate usefulness (18 v. 13 years) even in the most rapid cases of resistance evolution. Delaying tactics are thus available that can provide some or many years of continued glyphosate efficacy. If glyphosate-resistant cotton cropping is to remain profitable in Australian farming systems in the long-term, however, growers must adapt to the probability that they will have to deal with summer weeds that are no longer susceptible to glyphosate. Robust resistance management systems will need to include a diversity of weed control options, used appropriately.
Resumo:
Agricultural systems models worldwide are increasingly being used to explore options and solutions for the food security, climate change adaptation and mitigation and carbon trading problem domains. APSIM (Agricultural Production Systems sIMulator) is one such model that continues to be applied and adapted to this challenging research agenda. From its inception twenty years ago, APSIM has evolved into a framework containing many of the key models required to explore changes in agricultural landscapes with capability ranging from simulation of gene expression through to multi-field farms and beyond. Keating et al. (2003) described many of the fundamental attributes of APSIM in detail. Much has changed in the last decade, and the APSIM community has been exploring novel scientific domains and utilising software developments in social media, web and mobile applications to provide simulation tools adapted to new demands. This paper updates the earlier work by Keating et al. (2003) and chronicles the changing external challenges and opportunities being placed on APSIM during the last decade. It also explores and discusses how APSIM has been evolving to a “next generation” framework with improved features and capabilities that allow its use in many diverse topics.
Resumo:
We trace the evolution of the representation of management in cropping and grazing systems models, from fixed annual schedules of identical actions in single paddocks toward flexible scripts of rules. Attempts to define higher-level organizing concepts in management policies, and to analyse them to identify optimal plans, have focussed on questions relating to grazing management owing to its inherent complexity. “Rule templates” assist the re-use of complex management scripts by bundling commonly-used collections of rules with an interface through which key parameters can be input by a simulation builder. Standard issues relating to parameter estimation and uncertainty apply to management sub-models and need to be addressed. Techniques for embodying farmers' expectations and plans for the future within modelling analyses need to be further developed, especially better linking planning- and rule-based approaches to farm management and analysing the ways that managers can learn.
Resumo:
Business Process Management (BPM) as a research field integrates different perspectives from the disciplines computer science, management science and information systems research. Its evolution has by been shaped by the corresponding conferences series, the International Conference on Business Process Management (BPM conference). As much as in other academic discipline, there is an ongoing debate that discusses the identity, the quality and maturity of the BPM field. In this paper, we review and summarize the major findings a larger study that will be published in the Business & Information Systems Engineering journal in 2016. In the study, we investigate the identity and progress of the BPM conference research community through an analysis of the BPM conference proceedings. Based on our findings from this analysis, we formulate recommendations to further develop the conference community in terms of methodological advance, quality, impact and progression.
Resumo:
- Purpose The purpose of this paper is to present an evolutionary perspective on entrepreneurial learning, whilst also accounting for fundamental ecological processes, by focusing on the development of key recurring, knowledge components within nascent and growing small businesses. - Design/methodology/approach The paper relates key developments within the organizational evolution literature to research on entrepreneurial learning, with arguments presented in favor of adopting a multi‐level co‐evolutionary perspective that captures and explains hidden ecological process, such as niche‐construction. - Findings It is argued in the paper that such a multi‐level focus on key recurring knowledge components can shed new light on the process of entrepreneurial learning and lead to the cross‐fertilization of ideas across different domains of study, by offering researchers the opportunity to use the framework of variation‐selection‐retention to develop a multi‐level representation of organizational and entrepreneurial learning. - Originality/value Entrepreneurial learning viewed in this way, as a multi‐level struggle for survival amongst competing knowledge components, can provide entrepreneurs with a set of evolutionary heuristics as they re‐interpret their understanding of the evolution of their business.
Resumo:
Purpose: This paper seeks to address the issue of how are graduate skills developed. The focus is not on which skills, but rather what type of learning environments is required within Higher Education to support the development of skills valued and demanded by SMEs within Australia. Approach: This paper takes a step back to consider the underlying issue of how an individual student's habits of thought are altered. In doing so, the past works of Morgan, Dewey, Whitehead, and Tyler are synthesized with the modern work of Baxter Magolda, Heath, and Biggs. Findings: It is argued that that without the development of a student-centred learning environment, most graduates will not develop the types of skills demanded by SMEs in a meaningfully way. That the failure to treat knowledge and skills as equal drivers of curriculum design will result in an imbalance that relegates skill development to a secondary learning outcome. Practical Implications: By removing the distraction of what skills should be developed, a clearer focus is possible regarding how educators should assist students to develop a broad array of generic graduate skills. From this perspective, skills can be viewed as an essential element of the educational process, rather than a new element that must be squeezed in between content. Value of Paper: This paper extends recent discussion of skills development through the use of an evolutionary perspective. Viewed as a process of creating social change, education becomes increasingly connected to a world that lays beyond institutional boundaries, thus promoting the notion of developing graduates for the world that awaits them.
Resumo:
Wireless technologies are continuously evolving. Second generation cellular networks have gained worldwide acceptance. Wireless LANs are commonly deployed in corporations or university campuses, and their diffusion in public hotspots is growing. Third generation cellular systems are yet to affirm everywhere; still, there is an impressive amount of research ongoing for deploying beyond 3G systems. These new wireless technologies combine the characteristics of WLAN based and cellular networks to provide increased bandwidth. The common direction where all the efforts in wireless technologies are headed is towards an IP-based communication. Telephony services have been the killer application for cellular systems; their evolution to packet-switched networks is a natural path. Effective IP telephony signaling protocols, such as the Session Initiation Protocol (SIP) and the H 323 protocol are needed to establish IP-based telephony sessions. However, IP telephony is just one service example of IP-based communication. IP-based multimedia sessions are expected to become popular and offer a wider range of communication capabilities than pure telephony. In order to conjoin the advances of the future wireless technologies with the potential of IP-based multimedia communication, the next step would be to obtain ubiquitous communication capabilities. According to this vision, people must be able to communicate also when no support from an infrastructured network is available, needed or desired. In order to achieve ubiquitous communication, end devices must integrate all the capabilities necessary for IP-based distributed and decentralized communication. Such capabilities are currently missing. For example, it is not possible to utilize native IP telephony signaling protocols in a totally decentralized way. This dissertation presents a solution for deploying the SIP protocol in a decentralized fashion without support of infrastructure servers. The proposed solution is mainly designed to fit the needs of decentralized mobile environments, and can be applied to small scale ad-hoc networks or also bigger networks with hundreds of nodes. A framework allowing discovery of SIP users in ad-hoc networks and the establishment of SIP sessions among them, in a fully distributed and secure way, is described and evaluated. Security support allows ad-hoc users to authenticate the sender of a message, and to verify the integrity of a received message. The distributed session management framework has been extended in order to achieve interoperability with the Internet, and the native Internet applications. With limited extensions to the SIP protocol, we have designed and experimentally validated a SIP gateway allowing SIP signaling between ad-hoc networks with private addressing space and native SIP applications in the Internet. The design is completed by an application level relay that permits instant messaging sessions to be established in heterogeneous environments. The resulting framework constitutes a flexible and effective approach for the pervasive deployment of real time applications.
Resumo:
Social behaviour affects dispersal of animals and is an important modifier of genetic population structures. The female sex is often philopatric, which maintains coancestry within the breeding groups and promotes cooperative behaviours. This enables also inclusive fitness returns from altruism and explains why some individuals sacrifice personal reproduction for the good of others in social insects such as ants. However, reduced dispersal and population substructuring at the level of colonies may also entail inbreeding, loss of genetic diversity, and vulnerability. In addition, the most vulnerable ants are species that are evolved to parasitize colonies of other ants, and which compromise between abilities to disperse and the efficiency to parasitize the host. On the other hand, certain social organisations of ant colonies may facilitate a species to disperse outside its natural range and become a pest. Altogether, knowledge on genetic structuring of ant populations, as well as the evolution of their life histories can contribute to conservation biology and population management. The aim of this thesis was to investigate population structures and phylogenetic evolution of the ant Plagiolepis pygmaea and its two obligatory, workerless social parasites (inquilines) P. xene and P. grassei with genetic markers and DNA sequence data. The results support the general assumption that populations of inquiline parasites are highly fragmented and genetically vulnerable. Comparison of the two parasites suggests that differences in their relative abundance may follow from their interaction with the host, i.e. how well the species is adapted to reproduce in the host colonies. The results also indicate that the most recent free living ancestor to these two parasite species is their common host. This is considered to provide evidence for the controversial issue of sympatric speciation. Further, given that the level of adaptations to parasitic life history depends on the evolutionary time since the free-living ancestor, the results establish a link between species rarity and its evolutionary age. The populations of the host species P. pygmaea displayed significantly reduced dispersal both among the females (queens) and males, and high levels of inbreeding which may enhance worker altruism. In addition, the queens were found to mate with multiple males. Given the high relatedness between the queens and their mates, this occurs probably for non-genetic reasons, e.g. without benefits associated in genetically more diverse offspring. The results hence caution that the contribution of non-genetic factors to the prevailing mating patterns and genetic population structures should not be underestimated.