998 resultados para Euler Equations


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spherically converging detonation wave was numerically investigated by solving the one-dimensional multi-component Euler equations in spherical coordinates with a dispersion-controlled dissipative scheme. Finite rate and detailed chemical reaction models were used and numerical solutions were obtained for both a spherical by converging detonation in a stoichiometric hydrogen-oxygen mixture and a spherically focusing shock in air. The results showed that the post-shock pressure approximately arises to the same amplitude in vicinity of the focal point for the two cases, but the post-shock temperature level mainly depends on chemical reactions and molecular dissociations of a gas mixture. While the chemical reaction heat plays an important role in the early stage of detonation wave propagation, gas dissociations dramatically affect the post-shock flow states near the focal point. The maximum pressure and temperature, non-dimensionalized by their initial value, are approximately scaled to the propagation radius over the initial detonation diameter. The post-shock pressure is proportional to the initial pressure of the detonable mixture, and the post-shock temperature is also increased with the initial pressure, but in a much lower rate than that of the post-shock pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To improve the quality of driving flows generated with detonation-driven shock tunnels operated in the forward-running mode, various detonation drivers with specially designed sections were examined. Four configurations of the specially designed section, three with different converging angles and one with a cavity ring, were simulated by solving the Euler equations implemented with a pseudo kinetic reaction model. From the first three cases, it is observed that the reflection of detonation fronts at the converging wall results in an upstream-traveling shock wave that can increase the flow pressure that has decreased due to expansion waves, which leads to improvement of the driving flow. The configuration with a cavity ring is found to be more promising because the upstream-traveling shock wave appears stronger and the detonation front is less overdriven. Although pressure fluctuations due to shock wave focusing and shock wave reflection are observable in these detonation-drivers, they attenuate very rapidly to an acceptable level as the detonation wave propagates downstream. Based on the numerical observations, a new detonation-driven shock tunnel with a cavity ring is designed and installed for experimental investigation. Experimental results confirm the conclusion drawn from numerical simulations. The generated driving flow in this shock tunnel could maintain uniformity for as long as 4 ms. Feasibility of the proposed detonation driver for high-enthalpy shock tunnels is well demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A numerical study on wave dynamic processes occurring in muzzle blast flows, which are created by a supersonic projectile released from the open-end of a shock tube into ambient air, is described in this paper. The Euler equations, assuming axisymmetric flows, are solved by using a dispersion-controlled scheme implemented with moving boundary conditions. Three test cases are simulated for examining friction effects on the muzzle flow. From numerical simulations, the wave dynamic processes, including two blast waves, two jet flows, the bow shock wave and their interactions in the muzzle blasts, are demonstrated and discussed in detail. The study shows that the major wave dynamic processes developing in the muzzle flow remain similar when the friction varies, but some wave processes, such as shock-shock interactions, shock-jet interactions and the contact surface instability, get more intensive, which result in more complex muzzle blast flows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation into the three-dimensional propagation of the transmitted shock wave in a square cross-section chamber was described in this paper, and the work was carried out numerically by solving the Euler equations with a dispersion-controlled scheme. Computational images were constructed from the density distribution of the transmitted shock wave discharging from the open end of the square shock tube and compared directly with holographic interferograms available for CFD validation. Two cases of the transmitted shock wave propagating at different Mach numbers in the same geometry were simulated. A special shock reflection system near the corner of the square cross-section chamber was observed, consisting of four shock waves: the transmitted shock wave, two reflection shock waves and a Mach stem. A contact surface may appear in the four-shock system when the transmitted shock wave becomes stronger. Both the secondary shock wave and the primary vortex loop are three-dimensional in the present case due to the non-uniform flow expansion behind the transmitted shock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present results on the stability of compressible inviscid swirling flows in an annular duct. Such flows are present in aeroengines, for example in the by-pass duct, and there are also similar flows in many aeroacoustic or aeronautical applications. The linearised Euler equations have a ('critical layer') singularity associated with pure convection of the unsteady disturbance by the mean flow, and we focus our attention on this region of the spectrum. By considering the critical layer singularity, we identify the continuous spectrum of the problem and describe how it contributes to the unsteady field. We find a very generic family of instability modes near to the continuous spectrum, whose eigenvalue wavenumbers form an infinite set and accumulate to a point in the complex plane. We study this accumulation process asymptotically, and find conditions on the flow to support such instabilities. It is also found that the continuous spectrum can cause a new type of instability, leading to algebraic growth with an exponent determined by the mean flow, given in the analysis. The exponent of algebraic growth can be arbitrarily large. Numerical demonstrations of the continuous spectrum instability, and also the modal instabilities are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A numerical study on shocked flows induced by a supersonic projectile moving in tubes is described in this paper. The dispersion-controlled scheme was adopted to solve the Euler equations implemented with moving boundary conditions. Four test cases were carried out in the present study: the first two cases are for validation of numerical algorithms and verification of moving boundary conditions, and the last two cases are for investigation into wave dynamic processes induced by the projectile moving at Mach numbers of M-p = 2.0 and 2.4, respectively, in a short time duration after the projectile was released from a shock tube into a big chamber. It was found that complex shock phenomena exist in the shocked flow, resulting from shock-wave/projectile interaction, shock-wave focusing, shock-wave reflection and shock-wave/contact-surface interactions, from which turbulence and vortices may be generated. This is a fundamental study on complex shock phenomena, and is also a useful investigation for understanding on shocked flows in the ram accelerator that may provide a highly efficient facility for launching hypersonic projectiles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An improved two-dimensional space-time conservation element and solution element ( CE/ SE) method with second-order accuracy is proposed, examined and extended to simulate the detonation propagations using detailed chemical reaction models. The numerical results of planar and cellular detonation are compared with corresponding results by the Chapman-Jouguet theory and experiments, and prove that the method is a new reliable way for numerical simulations of detonation propagation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cylindrical cellular detonation is numerically investigated by solving two-dimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh. The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction. Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas. Split of cellular structures shows different features in the near-field and far-field from the initiation zone. Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation. Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a systematical numerical study of the effects of adiabatic exponent gamma on Richtmyer-Meshkov instability (RMI) driven by cylindrical shock waves, based on the gamma model for the multi-component problems and numerical simulation with high-order and high-resolution method for compressible Euler equations. The results show that the RMI of different gamma across the interface exhibits different evolution features with the case of single gamma. Moreover, the large gamma can hold back the development of nonlinear structures, such as spikes and bubbles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes criteria for predicting the tendency of looping in tropical cyclone tracks using the approach of vortex dynamics. We model the asymmetric structure of a cyclone by a system of vortex patches. The evolution of such system of vortices is simulated by the method of contour dynamics. A new set of exact analytic formulas for contour dynamics calculations is derived, which is shown to be more computationally effective. Based on point-vortex models, we derive analytic formulas for the criteria of looping in a cyclone track. From numerical experiments, the simulated trajectories obtained from the point-vortex system and vortex patch system agree quite well. Hence, the looping criteria obtained from the point-vortex system can be applied by forecasters to stay alert for tendency of looping in a cyclone track. To demonstrate the applicability of the proposed criteria, the trajectory of Typhoon Yancy (9012), whose field data are available from ''TCM-90'', is simulated. The case study shows that the asymmetric structure similar to the pattern of a beta gyre is responsible for its recurvature when Yancy landed Fujian Province, China on 20 August 1990.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The high Reynolds number flow contains a wide range of length and time scales, and the flow domain can be divided into several sub-domains with different characteristic scales. In some sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some sub-domains, the viscosity dissipation scales need to be considered in all directions; in some sub-domains, the viscosity dissipation scales are unnecessary to be considered at all. For laminar boundary layer region, the characteristic length scales in the streamwise and normal directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in the outer region of the boundary layer are L and U, respectively. In the neighborhood region of the separated point, the length scale l<equations computations for high Reynolds number flows, an idea of solving the conservation equations for discrete cells was proposed and named the discrete fluid dynamics (DFD) algorithm. Analysis shows that the basic conservative equations for discrete cells are the Euler equations, NS- and diffusion parabolized (DP) NS equations. In this paper, a new multiscale-domain decomposition method is developed for the high Reynolds number flow. First, the whole domain is decomposed to different sub-domains with the different characteristic scales. Then the different dominant equation of all sub-domains is defined according to the diffusion parabolized (DP) theory of viscous flow. Finally these different equations are solved simultaneously in whole computational region. For numerical tests of high Reynolds numerical flows, two-dimensional supersonic flows over rearward and frontward steps as well as an interaction flow between shock wave and boundary layer were solved numerically. The pressure distributions and local coefficients of skin friction on the wall are given. The numerical results obtained by the multiscale-domain decomposition algorithm are well agreement with those by NS equations. Comparing with the usual method of solving the Navier-Stokes equations in the whole flow, under the same numerical accuracy, the present multiscale domain decomposition method decreases CPU consuming about 20% and reflects the physical mechanism of practical flow more accurately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the transition of a detonation from deflagration was investigated numerically while a detonation wave propagates in a tube with a sudden change in cross section, referred to as the expansion cavity. The dispersion-controlled scheme was adopted to solve Euler equations of axis-symmetric flows implemented with detailed chemical reaction kinetics of hydrogen-oxygen (or hydrogen-air) mixture. The fractional step method was applied to treat the stiff problems of chemical reaction flow. It is observed that phenomena of detonation quenching and reigniting appear when the planar detonation front diffracts at the vertex of the expansion cavity entrance. Numerical results show that detonation front in mixture of higher sensitivity keeps its substantial coupled structure when it propagates into the expansion cavity. However, the leading shock wave decouples with the combustion zone if mixture of lower sensitivity was set as the initial gas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在对喷流噪声研究进展广泛调研的基础上,本论文采用柱坐标下轴对称的线化欧拉方程(LEE)、空间四阶时间二阶精度的MacCormack差分格式,对水下气体喷流的混合噪声产生与辐射特性进行数值模拟研究。采用基于经验公式的积分计算方法来确定求解线化欧拉方程所需的平均流场,对边界条件给予特殊处理以避免声波通过时产生反射。本文计算声明,线化欧拉方程及其相应的高阶数值方法提供了一个可以预报水下气体喷流混合噪声传播的省时高效的途径。给出的结果指出:由于水介质的密度很大,水下气体喷流远场收集到的噪声强度比同样情况下空中气体喷流要小,这说明水下发射导弹更具隐蔽性。同时,由于水介质中的声速很大,水下的高速喷流噪声场呈现更加均匀的性态,而不是象空中混合噪声在下游沿一定的方向辐射。鉴于本文只考虑常温情况,气体喷流速度是影响喷流噪声产生与辐射的重要参数:马赫数增大,远场的噪声强度随之增大。另外,水下喷流噪声的特性还与扰动频率有关。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-organized generation of transverse waves associated with the transverse wave instabilities at a diverging cylindrical detonation front was numerically studied by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. After solution validation, four mechanisms of the transverse wave generation were identified from numerical simulations, and referred to as the concave front focusing, the kinked front evolution, the wrinkled front evolution and the transverse wave merging, respectively. The propagation of the cylindrical detonation is maintained by the growth of the transverse waves that match the rate of increase in surface area of the detonation front to asymptotically approach a constant average number of transverse waves per unit length along the circumference of the detonation front. This cell bifurcation phenomenon of cellular detonations is discussed in detail to gain better understanding on detonation physics.