968 resultados para Escherichia-coli K-12


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flagellate bacteria such as Escherichia coli and Salmonella enterica serovar Typhimurium typically express 5 to 12 flagellar filaments over their cell surface that rotate in clockwise (CW) and counterclockwise directions. These bacteria modulate their swimming direction towards favorable environments by biasing the direction of flagellar rotation in response to various stimuli. In contrast, Rhodobacter sphaeroides expresses a single subpolar flagellum that rotates only CW and responds tactically by a series of biased stops and starts. Rotor protein FliG transiently links the MotAB stators to the rotor, to power rotation and also has an essential function in flagellar export. In this study, we sought to determine whether the FliG protein confers directionality on flagellar motors by testing the functional properties of R. sphaeroides FliG and a chimeric FliG protein, EcRsFliG (N-terminal and central domains of E. coli FliG fused to an R. sphaeroides FliG C terminus), in an E. coli FliG null background. The EcRsFliG chimera supported flagellar synthesis and bidirectional rotation; bacteria swam and tumbled in a manner qualitatively similar to that of the wild type and showed chemotaxis to amino acids. Thus, the FliG C terminus alone does not confer the unidirectional stop-start character of the R. sphaeroides flagellar motor, and its conformation continues to support tactic, switch-protein interactions in a bidirectional motor, despite its evolutionary history in a bacterium with a unidirectional motor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caseinoglycomacropeptide (CGMP) derived from kappa-casein was investigated for its ability to inhibit the adhesion of 3 strains of verotoxigenic Escherichia coli (VTEC) and 3 strains of enteropathogenic Escherichia coli (EPEC) to human HT29 tissue cell cultures. Effects on adhesion of Desulfovibrio desulfuricans, Lactobacillus pentosus, Lactobacillus casei, Lactobacillus acidophilus, and Lactobacillus gasseri were also investigated. Generally, CGMP exerted effective anti-adhesive properties at a dose of 2.5 mg/mL, albeit with a high degree of strain specificity. The CGMP reduced adhesion of VTEC strains to < 50% of the control and reduced adhesion of EPEC strains to between 80 and 10% of the control. The CGMP also reduced the adhesion of L. pentosus and L. casei to 44 and 42%, respectively. A slight but significant reduction of L. acidophilus, to 81%, was observed, but no significant effects were detected with either Dsv. desulfuricans or L. gasseri. Further investigation of the dose response relationships with the E. coli strains gave IC50 values ranging between 0.12 and 1.06 mg/mL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli isolates were recovered from faecal samples taken from cattle, sheep and pigs at slaughter in England and Wales. Isolates (n = 1227) selected at random from this collection were each hybridised in colony dot-blot experiments with an eae gene probe that presumptively identified attaching-effacing E. coli (AEEC). Of the 99 (8.1%) eae positive isolates 72 were of ovine origin, 24 were of bovine origin and three of porcine origin. None were typed as O157:H7 whereas 78 were assigned to 23 serogroups and 21 were untypable. The most frequently isolated eae positive serogroups were O156 (10), O26 (8), O103 (8), O108 (7) O56 (6) and O168 (6) of which serogroups O103 and O156 only were recovered from all three animal species. In tissue culture adherence assays, 36 representatives of eae positive isolates of all serogroups and host of origin tested induced intimate attachment with varying degrees of actin accumulation and pedestal formation in the HEp-2 cells. The identity of the eae type for these 36 was determined by specific PCR and the most prevalent intimin types were caebeta (15), eaegamma (12) and eaeepsilon (4). Isolates were examined by PCR for the presence of other virulence determinants and five possessed stx1 but none possessed stx2. One O115 eaeepsilon isolate possessed cnf1 and 2, hlyA, etpD and katP genes which is a novel combination of virulence determinants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to compare the prevalence of virulence genes in 158 Escherichia coli strains isolated from 51 clinical cases of UTIs, 52 of pyometra and from 55 fecal samples from healthy dogs by PCR. papC was found in 12 (23.5%) strains isolated from UTIs, 19 (36.5%) from pyometra and 10 (18.2%) from feces. papGII was observed in 3 (5.8%) strains from pyometra, and papGIII in 10 (19.6%) from UTIs, 15 (28.8%) from pyometra and 9 (16.4%) from feces. sfaS was detected in 22 (43.1%) strains from UTIs, 24 (46.1%) from pyometra and 19 (34.5%) from feces. hlyA was observed in 17 (33.3%) strains from UTIs, 18 (34.6%) from pyometra and 7 (12.7%) from feces, while cnf-1 was detected in 11 (21.6%) from UTIs, 21 (40.4%) from pyometra and 9 (16.4%) from feces. iucD was observed in 12 (23.5%) strains from UTIs, 9 (17.3%) from pyometra and 1 (1.8%) from feces. usp was found 17 (33.3%) isolates from UTIs and 36 (69.9%) from pyometra. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful international clones have recently emerged among Escherichia coli that produce CTX-M beta-lactamases as important causes of community-onset urinary tract and bloodstream infections. One hundred and seven isolates that belong to sequence types (STs) ST38, ST131, ST405, ST648, and 38 nonrelated CTX-M producing E. coli from Canada and the Netherlands were assigned to phylogenetic groups and tested for the presence of genes encoding for virulence factors (VFs) using established multiplex polymerase chain reaction. The STs E. coli were significantly more resistant to antibiotics-ST38, ST405, and ST648 belonged to phylogenetic group D while ST131 belonged to B2. Secreted autotransporter toxin (sat), aerobactin receptor, and pathogenicity island marker were significantly more common among the STs; the heat-resistant agglutinin (hra) was present in ST38, sat, and uropathogenic-specific protein, and putative adhesin-siderophore receptor was more common in ST131, while outer membrane protease T was present in ST648. ST131 had a significantly higher VF score. In conclusion, the precise role of these VFs remains to be elucidated; however, we have identified certain putative VFs that possibly contribute to the fitness and success of certain sequence types. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro, RecA protein catalyses the exchange of single strands of DNA between different DNA molecules with sequence complementarity. In order to gain insight into this complex reaction and the roles of ATP binding and hydrolysis, two different approaches have been taken. The first is to use short single-stranded deoxyoligonucleotides as the ssDNA in strand exchange. These were used to determine the signal for hydrolysis and the structure of the RecA-DNA complex that hydrolyses ATP. I present a defined kinetic analysis of the nucleotide triphosphatase activity of RecA protein using short oligonucleotides as ssDNA cofactor. I compare the effects of both homopolymers and mixed base composition oligomers on the ATPase activity of RecA protein. I examine the steady state kinetic parameters of the ATPase reaction using these oligonucleotides as ssDNA cofactor, and show that although RecA can both bind to, and utilise, oligonucleotides 7 to 20 residues in length to support the repressor cleavage activity of RecA, these oligonucleotides are unable to efficiently stimulate the ATPase activity of RecA protein. I show that the K$\sb{\rm m}\sp{\rm ATP}$, the Hill coefficient for ATP binding, the extent of reaction, and k$\sb{\rm cat}$ are all a function of ssDNA chain length and that secondary structure may also play a role in determining the effects of a particular chain length on the ATPase activity of RecA protein.^ The second approach is to utilise one of the many mutants of RecA to gain insight into this complex reaction. The mutant selected was RecA1332. Surprisingly, in vitro, this mutant possesses a DNA-dependent ATPase activity. The K$\sb{\rm m}\sp{\rm ATP}$, Hill coefficient for ATP binding, and K$\sb{\rm m}\sp{\rm DNA}$ are similar to that of wild type. k$\sb{\rm cat}$ for the ATPase activity is reduced 3 to 12-fold, however. RecA1332 is unable to use deoxyoligonucleotides as DNA cofactors in the ATPase reaction, and demonstrates an increased sensitivity to inhibition by monovalent ions. It is able to perform strand exchange with ATP and ATP$\lbrack\gamma\rbrack$S but not with UTP, whereas the wild type protein is able to use all three nucleotide triphosphates. RecA1332 appears to be slowed in its ability to form intermediates and to convert these intermediates to products. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primase DnaG of Escherichia coli requires the participation of the replicative helicase DnaB for optimal synthesis of primer RNA for lagging strand replication. However, previous studies had not determined whether the activation of the primase or its loading on the template was accomplished by a helicase-mediated structural alteration of the single-stranded DNA or by a direct physical interaction between the DnaB and the DnaG proteins. In this paper we present evidence supporting direct interaction between the two proteins. We have mapped the surfaces of interaction on both DnaG and DnaB and show further that mutations that reduce the physical interaction also cause a significant reduction in primer synthesis. Thus, the physical interaction reported here appears to be physiologically significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the S1S2 ligand binding domain [Kuusinen, A., Arvola, M. & Keinänen, K. (1995) EMBO J. 14, 6327–6332] of the rat α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-selective glutamate receptor GluR2 in Escherichia coli under control of a T7 promoter leads to production of >100 mg/liter of histidine-tagged S1S2 protein (HS1S2) in the form of inclusion bodies. Using a novel fractional factorial folding screen and a rational, step-by-step approach, multiple conditions were determined for the folding of the HS1S2 α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid binding domain. Characterization of the HS1S2 ligand binding domain showed that it is water-soluble, monomeric, has significant secondary structure, and is sensitive to trypsinolysis at sites close to the beginning of the putative transmembrane regions. Application of a fractional factorial folding screen to other proteins may provide a useful means to evaluate E. coli as an economical and convenient expression host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotactic responses in Escherichia coli are typically mediated by transmembrane receptors that monitor chemoeffector levels with periplasmic binding domains and communicate with the flagellar motors through two cytoplasmic proteins, CheA and CheY. CheA autophosphorylates and then donates its phosphate to CheY, which in turn controls flagellar rotation. E. coli also exhibits chemotactic responses to substrates that are transported by the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system (PTS). Unlike conventional chemoreception, PTS substrates are sensed during their uptake and concomitant phosphorylation by the cell. The phosphoryl groups are transferred from PEP to the carbohydrates through two common intermediates, enzyme I (EI) and phosphohistidine carrier protein (HPr), and then to sugar-specific enzymes II. We found that in mutant strains HPr-like proteins could substitute for HPr in transport but did not mediate chemotactic signaling. In in vitro assays, these proteins exhibited reduced phosphotransfer rates from EI, indicating that the phosphorylation state of EI might link the PTS phospho-relay to the flagellar signaling pathway. Tests with purified proteins revealed that unphosphorylated EI inhibited CheA autophosphorylation, whereas phosphorylated EI did not. These findings suggest the following model for signal transduction in PTS-dependent chemotaxis. During uptake of a PTS carbohydrate, EI is dephosphorylated more rapidly by HPr than it is phosphorylated at the expense of PEP. Consequently, unphosphorylated EI builds up and inhibits CheA autophosphorylation. This slows the flow of phosphates to CheY, eliciting an up-gradient swimming response by the cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computer analysis of 2328 protein sequences comprising about 60% of the Escherichia coli gene products was performed using methods for database screening with individual sequences and alignment blocks. A high fraction of E. coli proteins--86%--shows significant sequence similarity to other proteins in current databases; about 70% show conservation at least at the level of distantly related bacteria, and about 40% contain ancient conserved regions (ACRs) shared with eukaryotic or Archaeal proteins. For > 90% of the E. coli proteins, either functional information or sequence similarity, or both, are available. Forty-six percent of the E. coli proteins belong to 299 clusters of paralogs (intraspecies homologs) defined on the basis of pairwise similarity. Another 10% could be included in 70 superclusters using motif detection methods. The majority of the clusters contain only two to four members. In contrast, nearly 25% of all E. coli proteins belong to the four largest superclusters--namely, permeases, ATPases and GTPases with the conserved "Walker-type" motif, helix-turn-helix regulatory proteins, and NAD(FAD)-binding proteins. We conclude that bacterial protein sequences generally are highly conserved in evolution, with about 50% of all ACR-containing protein families represented among the E. coli gene products. With the current sequence databases and methods of their screening, computer analysis yields useful information on the functions and evolutionary relationships of the vast majority of genes in a bacterial genome. Sequence similarity with E. coli proteins allows the prediction of functions for a number of important eukaryotic genes, including several whose products are implicated in human diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe here a simple and easily manipulatable Escherichia coli-based genetic system that permits us to identify bacterial gene products that modulate the sensitivity of bacteria to tumoricidal agents, such as DMP 840, a bisnaphthalimide drug. To the extent that the action of these agents is conserved, these studies may expand our understanding agents is conserved, these studies may expand our understanding of how the agents work in mammalian cells. The approach briefly is to use a library of E. coli genes that are overexpressed in a high copy number vector to select bacterial clones that are resistant to the cytotoxic effects of drugs. AtolC bacterial mutant is used to maximize permeability of cells to hydrophobic organic molecules. By using DMP 840 to model the system, we have identified two genes, designated mdaA and mdaB, that impart resistance to DMP 840 when they are expressed at elevated levels. mdaB maps to E. coli map coordinate 66, is located between the parE and parC genes, and encodes a protein of 22 kDa. mdaA maps to E. coli map coordinate 18, is located adjacent to the glutaredoxin (grx) gene, and encodes a protein of 24 kDa. Specific and regulatable overproduction of both of these proteins correlates with DMP 840 resistance. Overproduction of the MdaB protein also imparts resistance to two mammalian topoisomerase inhibitors, Adriamycin and etoposide. In contrast, overproduction of the MdaA protein produces resistance only to Adriamycin. Based on its drug-resistance properties and its location between genes that encode the two subunits of the bacterial topoisomerase IV, we suggest that mdaB acts by modulating topoisomerase IV activity. The location of the mdaA gene adjacent to grx suggests it acts by a drug detoxification mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mannose-binding type 1 pili are important virulence factors for the establishment of Escherichia coli urinary tract infections (UTIs). These infections are initiated by adhesion of uropathogenic E. coli to uroplakin receptors in the uroepithelium via the FimH adhesin located at the tips of type 1 pili. Blocking of bacterial adhesion is able to prevent infection. Here, we provide for the first time binding data of the molecular events underlying type 1 fimbrial adherence, by crystallographic analyses of the FimH receptor binding domains from a uropathogenic and a K-12 strain, and affinity measurements with mannose, common mono- and disaccharides, and a series of alkyl and aryl mannosides. Our results illustrate that the lectin domain of the FimH adhesin is a stable and functional entity and that an exogenous butyl alpha- D-mannoside, bound in the crystal structures, exhibits a significantly better affinity for FimH (K-d = 0.15 muM) than mannose (K-d = 2.3 muM). Exploration of the binding affinities of alpha-D-mannosides with longer alkyl tails revealed affinities up to 5 nM. Aryl mannosides and fructose can also bind with high affinities to the FimH lectin domain, with a 100-fold improvement and 15-fold reduction in affinity, respectively, compared with mannose. Taken together, these relative FimH affinities correlate exceptionally well with the relative concentrations of the same glycans needed for the inhibition of adherence of type 1 piliated E. coli. We foresee that our findings will spark new ideas and initiatives for the development of UTI vaccines and anti-adhesive drugs to prevent anticipated and recurrent UTIs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED: Translocation of effector proteins via a type III secretion system (T3SS) is a widespread infection strategy among Gram-negative bacterial pathogens. Each pathogen translocates a particular set of effectors that subvert cell signaling in a way that suits its particular infection cycle. However, as effector unbalance might lead to cytotoxicity, the pathogens must employ mechanisms that regulate the intracellular effector concentration. We present evidence that the effector EspZ controls T3SS effector translocation from enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli. Consistently, an EPEC espZ mutant is highly cytotoxic. Following ectopic expression, we found that EspZ inhibited the formation of actin pedestals as it blocked the translocation of Tir, as well as other effectors, including Map and EspF. Moreover, during infection EspZ inhibited effector translocation following superinfection. Importantly, while EspZ of EHEC O157:H7 had a universal "translocation stop" activity, EspZ of EPEC inhibited effector translocation from typical EPEC strains but not from EHEC O157:H7 or its progenitor, atypical EPEC O55:H7. We found that the N and C termini of EspZ, which contains two transmembrane domains, face the cytosolic leaflet of the plasma membrane at the site of bacterial attachment, while the extracellular loop of EspZ is responsible for its strain-specific activity. These results show that EPEC and EHEC acquired a sophisticated mechanism to regulate the effector translocation.

IMPORTANCE: Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important diarrheal pathogens responsible for significant morbidity and mortality in developing countries and the developed world, respectively. The virulence strategy of EPEC and EHEC revolves around a conserved type III secretion system (T3SS), which translocates bacterial proteins known as effectors directly into host cells. Previous studies have shown that when cells are infected in two waves with EPEC, the first wave inhibits effector translocation by the second wave in a T3SS-dependent manner, although the factor involved was not known. Importantly, we identified EspZ as the effector responsible for blocking protein translocation following a secondary EPEC infection. Interestingly, we found that while EspZ of EHEC can block protein translocation from both EPEC and EHEC strains, EPEC EspZ cannot block translocation from EHEC. These studies show that EPEC and EHEC employ a novel infection strategy to regulate T3SS translocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the genetic background of bla(TEM-4) and the complete sequence of pRYC11::bla(TEM-4), a mosaic plasmid that is highly similar to pKpQIL-like variants, predominant among TEM-4 producers in a Spanish hospital (1990 to 2004), which belong to Klebsiella pneumoniae and Escherichia coli high-risk clones responsible for the current spread of different antibiotic resistance genes. Predominant populations of plasmids and host adapted clonal lineages seem to have greatly contributed to the spread of resistance to extended-spectrum cephalosporins.