959 resultados para Equine semen
Resumo:
Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation. In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation. Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares. In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3). In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.
Resumo:
The penis and prepuce of the stallion have a high bacterial load on its surface, forming a natural microbial flora that contaminates the semen during ejaculation. Bacterial growth in semen may cause a decline on sperm quality, viability, and fertility and predisposes the occurrence of endometritis in inseminated mares. Thus, the aim of this study was to evaluate the effect of penile wash before semen collection, the addition of different commercial skim milk-based extenders containing antibiotics (BotuSemen and INRA96), and the removal of seminal plasma by filtration on the quality, viability, and bacterial proliferation on fresh and cooled stallion semen. Animals that were never submitted to penile wash before semen collection tended to have lower bacterial contamination in the ejaculate. Semen samples extended in BotuSemen showed superiority in total motility, progressive motility, average path velocity, and rapid sperm and lower bacterial contamination in relation to semen samples extended in INRA96 after 24 hours of cooling. No difference was found in these parameters between the storage temperatures (5 degrees C and 15 degrees C). Furthermore, the removal of seminal plasma by filtration reduced the bacterial load in semen after cooling. In conclusion, the penile wash before semen collection tended to reduce the bacterial growth in fresh semen. The use of a semen extender with appropriate antibiotics and removal of seminal plasma by filtration were effective in reducing the bacterial contamination and preserved the quality of cooled stallion semen. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This study investigated: (i) the prevalence of ureaplasmas in semen and washed semen and (ii) the effect of ureaplasmas on semen andrology parameters. Design: Prospective study. Setting: IVF unit -private hospital, Brisbane, Australia. Patient(s): Three hundred and forty three men participating in an assisted reproductive technology (ART) treatment cycle. Intervention(s): Semen and washed semen tested by culture, PCR assays and indirect immunofluorescent antibody assays. Statistical differences were determined by a t-test, Wilcoxon or Pearson’s Chi- square test where appropriate. Main Outcome Measure(s): The prevalence of ureaplasmas in semen and washed semen and the effect of these microorganisms on semen andrology parameters. Result(s): Ureaplasmas were detected in 73/343 (22%) semen samples and 29/343 (8.5%) washed semen samples. Ureaplasmas adherent to the surface of spermatozoa were demonstrated by indirect immunofluorescent antibody testing. U. parvum serovar 6 (36.6%) and U. urealyticum (30%) were the most prevalent isolates in washed semen. A comparison of the semen andrology parameters of washed semen ureaplasma positive and negative groups demonstrated a lower proportion of non-motile sperm in the washed semen ureaplasma positive group. Conclusion(s): Ureaplasmas are not always removed from semen by a standard ART washing procedure and can remain adherent to the surface of spermatozoa.